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Abstract
How does a profit-maximizing manager form teams and compensate workers in the pres-

ence of both adverse selection and moral hazard? Under complete information, it is well

known that any complementarity in characteristics implies that positive assortative match-

ing is productively efficient. But, under asymmetric information, we uncover the problem of

disassortative incentives: incentive costs may increase in assortativity. Profit maximization

thus prescribes either random or negative assortative matching, both productively ineffi-

cient, when complementarities are weak and effort costs are high enough. When this is the

case, the manager may instead prefer to delegate matching, allowing workers to sort them-

selves into teams. Our results shed light on recent empirical work documenting patterns of

non-assortative matching inside of firms.
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1 Introduction

Teamwork has increasingly become “a way of life" in many firms (Lazear y

Shaw, 2007). For instance, at Google, “the team is the molecular unit where

real production happens, where innovative ideas are conceived and tested,

and where employees experience most of their work."1 Yet, forming teams

composed of complementary and productive workers is complicated. First,

workers often possess private information about their characteristics, such as

their ability or willingness to work collaboratively. Second, individual effort is

difficult to identify from team output. A profit-maximizing manager must there-

fore design contracts that simultaneously screen for unobservable characteris-

tics and provide incentives for effort in teams.

What is the optimal assignment of workers to teams? How should a man-

ager remunerate her workers? With few exceptions, the economic theory of

teams has answered each question separately. To wit, a large literature in

matching, pioneered by Becker (1973), studies the optimal composition of

teams, abstracting from incentives. At the same time, a large literature in

contract theory, pioneered by Hölmstrom (1982), studies the provision of in-

centives within a single team, fixing its composition.2

By conducting a unified analysis of optimal team composition and incen-

tives, we uncover a novel economic distortion: Even when matching likes with

likes– positive assortative matching (PAM)– is productively efficient, creating

the right incentives for workers to truthfully reveal their characteristics and

exert effort can make implementing PAM prohibitively costly, leading a profit-

maximizing manager to match non-assortatively. We identify when and why

productive distortions occur, and argue that non-assortative matching within

a firm need not indicate a lack of productive complementarity. Moreover, we
1https://rework.withgoogle.com/guides/understanding-team-effectiveness/steps/

introduction/
2Less related is the work of Marschak y Radner (1972), which investigates the behavior of a fixed team of

agents whom share a common prior and objective function, but possess different information when taking actions.
Within this framework, Prat (2002) studies the optimal composition of teams.
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identify when a profit-maximizing manager would prefer to allow workers to

sort themselves in order to save on incentive costs. Together, our results ra-

tionalize recent empirical evidence of non-assortative matching inside of firms

(Adhvaryu et al. (2019)).

We posit a simple model to illustrate the key mechanism. A single risk-

neutral manager assigns risk-neutral workers, each protected by limited liabil-

ity, to teams of two. She then compensates workers upon observing the output

that each team produces. Each worker has a private type, high or low, and can

exert costly hidden effort. Effort by both teammates is necessary to produce

high output with positive probability; high workers (“highs") are more productive

than low workers (“lows"); and there are complementarities between types–the

productivity gain from working with a high is strictly increasing in own type (the

production technology is supermodular).3

We characterize optimal wages in terms of the assortativity of the match-

ing the manager implements and the production function. A matching exhibits

positive assortativity if highs are more likely than lows to match highs. The

production technology is log submodular if the proportionate gain from match-

ing a high is decreasing in own type. Theorem 1 states that highs and lows

must both receive strictly positive information rent if, and only if, the imple-

mented matching exhibits strict positive (negative) assortativity and the pro-

duction technology is strictly log submodular (supermodular).

The result is a consequence of two different incentive problems. The first

is standard. In order to incentivize a low to exert effort, she must pay him a

high enough wage for producing high output relative to what she pays him for

producing low output. But, highs are more likely than lows to produce high

output. Providing effort incentives for lows thereby increases the payoff to

highs from misreporting their type. To dissuade such deviations, the manager

must always pay highs a strictly positive information rent.
3Interestingly, all distortions we identify hold only when production is supermodular. In particular, if production

is strictly submodular, Theorem 2 directly implies that there is no incentive-efficiency tradeoff.
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The second is non-standard–we call it the problem of disassortative incen-

tives. When lows are held to their reservation value (so that they receive zero

information rent), the payoff a high receives after deviating is determined by

the proportionate gain he gets from being a high, rather than a low, in his as-

signed team. But if the production technology is strictly log submodular, then

this gain is strictly higher when he is assigned to work with a low instead of

a high. Counterintuitively, deviation payoffs are therefore increasing in the as-

sortativity of the implemented matching. Increasing wages for highs to satisfy

the downward incentive constraint, however, makes upward deviations by lows

profitable. Satisfying both incentive constraints thus requires paying lows a

strictly positive information rent.

Disassortative incentives give rise to a novel rent-efficiency tradeoff: If the

production technology is strictly log submodular, optimal wage payments strictly

increase in the assortativity of the matching the manager implements. Theorem

2, our main result, shows that PAM is suboptimal if and only if effort costs lie

above a positive threshold. Moreover, as talent becomes scarce or abundant

(the proportion of highs in the population approaches zero or one), this thresh-

old approaches zero, so that PAM is suboptimal for all cost parameters. In

the former case, random matching (RM) is optimal while in the latter negative

assortative matching (NAM) is optimal.4

To conclude our analysis, we consider the implications of our result for the

internal organization of the firm. We ask the following question: If a manager

could commit to not asking workers to report their types, so that she would

instead have to delegate the problem of sorting to her workers, would she do

so? On one hand, such an arrangement entails a loss of control: She can no

longer tailor wages to reported characteristics. But on the other, the manager
4The intuition for the optimality of RM is subtle, but follows directly from our discussion of Theorem 1: If the

production technology is strictly log submodular, then as the implemented matching goes from exhibiting positive
assortativity to exhibiting negative assortativity, the manager goes from paying information rents to both highs
and lows, to paying rents to highs alone. Hence, the manager saves less on incentive costs when distorting the
matching past the point at which the matching is random, i.e. incentive costs have a kink. If the cost of effort is
not too high, in which case NAM is optimal, and not too low, in which case PAM is optimal, then it turns out that
RM is optimal.

5



can exploit her workers’ local information about each other’s characteristics.

We formalize this tradeoff by considering an environment in which there is

no reporting stage, but in which workers are endowed with knowledge of one

another’s types. Using this knowledge, workers then form self-enforcing teams.

Theorem 3, our final result, shows that if the firm is large enough, talent is

scarce, and effort is not too costly, then delegation is optimal. We thus provide

a theoretical rationale for the increasing prominence of self-organized teams

within firms (see Kambhampati et al. (2018) and the references therein).

New empirical evidence supports our theoretical results. Using three years

of daily data on worker-level productivity and team composition in a large In-

dian garment manufacturer, Adhvaryu et al. (2019) find evidence for NAM de-

spite production complementarities between workers.5 They hypothesize that

NAM arises due to large negative consequences of failing to meet deadlines to

complete and deliver an order, i.e. frayed buyer-supplier relations. Our results

show that NAM can be rationalized even in the absence of such considerations,

as long as complementarities are sufficiently low. Quantifying the relative im-

portance of each channel is therefore a promising avenue for future empirical

research.6

1.1 Literature

We summarize the closest related theoretical literature. Franco et al. (2011)

and Kaya y Vereshchagina (2014) consider settings in which a profit-maximizing

manager assigns workers to teams subject to moral hazard. Our model en-

riches these frameworks to include adverse selection. Damiano y Li (2007)

and Johnson (2013) find conditions for PAM to be profit-maximizing in en-
5Aggregate output would increase by an estimated 1%- 4% if the firm switched to PAM. We note that Theorem

3 implies that whenever NAM is optimal under centralized matching delegation is suboptimal.
6Understanding whether productivity losses are driven by supply chain constraints, as hypothesized by Ad-

hvaryu et al. (2019), or by the degree of technological complementarity in the firm, as our theory suggests, is of
considerable importance for development policy. In particular, Adhvaryu et al. (2019) suggest that reducing the
market power of large multinational buyers might result in lower inequality between firms in developing and devel-
oped countries. In contrast, our theory suggests a “tipping point" explanation, unrelated to market power, wherein
the endogenously chosen productivity of a firm is discontinuous in the degree of technological complementarity.
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vironments in which individuals have private information, but match payoffs

are specified exogenously.7 Our model enriches these frameworks to include

moral hazard within teams. To distinguish our contribution from these papers,

we assume a production specification ensuring that neither moral hazard nor

adverse selection alone generates a distortion of PAM.8 Indeed, all of our re-

sults are driven by the interaction between the two.

More broadly, building on Becker (1973)’s marriage model, a number of

papers have investigated the role of imperfectly transferable utility and costly

search in distorting the stability of PAM.9 Though we share a similar motiva-

tion as these papers, our analysis is quite different due to our focus on profit-

maximization under asymmetric information rather than stability under com-

plete information. Nevertheless, the sufficient condition for PAM we identify,

log supermodularity, is identical to the one found by Smith (2006), who studies

the problem of random search for marriage partners in an environment with

nontransferable utility. In Smith (2006)’s theory, the role of this condition is to

ensure that the opportunity cost of time is small enough relative to the reward

of finding a higher quality match. In our theory, the condition ensures that

the gain a high worker obtains from misreporting his type is decreasing in the

assortativity of the matching the manager implements.

Our modeling of the moral hazard in teams problem follows the literature

in which limited liability constraints are the source of contracting friction (in

addition to Franco et al. (2011) and Kaya y Vereshchagina (2014), see, among
7The problem of a profit-maximizing platform also bears resemblance to the one faced by the manager in our

study. See, for instance, Gomes y Pavan (2016) and the references therein.
8Precisely, our specification, which nests Kremer (1993)’s O-Ring model as a special case, implies that type

and effort are complements. As shown by Franco et al. (2011) and Kaya y Vereshchagina (2014), this leads to
PAM absent adverse selection.

9For instance, Legros y Newman (2007) find conditions for PAM in general environments with imperfectly
transferable utility; Serfes (2005) and Serfes (2007) find conditions for PAM when principals match agents (see
also Wright (2004)); Shimer y Smith (2000) find conditions for PAM when individuals engage in random search;
and Eeckhout y Kircher (2010) find conditions for PAM when individuals engage in directed search. An interesting,
recent application of the framework of Legros y Newman (2007) is Chiappori y Reny (2016), who find NAM is
optimal when individuals are heterogeneous in risk aversion and match to share risk. See also Anderson y Smith
(2010), who find NAM to be optimal in a dynamic sorting environment in which workers have a high discount factor
and possess a public reputation, and Chade y Eeckhout (2018), who find a natural informational environment in
which the match surplus generated by a team is submodular in characteristics, so that NAM is optimal.
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many other papers, Sappington (1983), Sappington (1984), Innes (1990), and

Che y Yoo (2001)). This ensures that, despite our assumption of risk neutrality,

“efficiency wages" must be paid to incentivize effort. Outside of this literature,

McAfee y McMillan (1991) consider the interaction of adverse selection and

moral hazard within a fixed team in the absence of limited liability constraints.

They establish conditions under which incentives are linear in team output,

even when individual performance measures are available.

Finally, our modeling of the tradeoff between centralized assignment and

delegated matching is inspired by the literature on delegation, i.e. Aghion y

Tirole (1997) and Dessein (2002), wherein the benefit of delegation is that

workers can utilize superior information to make decisions and the cost is a

loss of control. In contrast to these theories, however, the loss of control issue

in our model is not related to the misalignment of incentives between workers

and the manager. Indeed, under strictly increasing differences, endogenous

sorting leads to PAM, the productively-efficient matching.10 Instead, the loss

of control is related to the manager’s decision to commit to not eliciting reports

about workers’ types; since wages cannot depend on reports, the manager’s

ability to extract rents is limited.

2 Model

We describe the environment, timing, information, and contracts in the case in

which matching is centralized, leaving the description of the delegation alter-

native to Section 5.

2.1 Environment

There is a single profit-maximizing manager, described using female pronouns,

and a finite, even number of workers, each described using male pronouns.
10Kambhampati et al. (2018) studies delegated matching in an informational environment in which endoge-

nous sorting is not productively efficient.
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Workers are indexed by the set N := {1, ...,N } and there at least four workers,

N ≥ 4. Output is produced in teams of two. Within a team, each worker

either exerts effort, e = 1, or does not, e = 0, so that the set of effort levels is

E := {0,1}. The disutility of effort for every worker is c > 0. Each team produces

high output, y = 1, or low output, y = 0, so that the set of output levels is

Y := {0,1}. The manager is the residual claimant of all output produced by

the workers, which may be sold in a competitive market at the normalized

price of one per unit. Workers are protected by limited liability and may only

receive non-negative wages. Each has an outside option normalized to zero.

All parties are risk neutral.

Each worker has a type: high (H), with probability 0 < p < 1, or low (L), with

probability 1−p. Worker i’s type is denoted by ti ∈ T := {H,L} and is statistically

independent of the types of all other workers. The types of workers in a team

affect the probability with which the team produces high output: If any worker

in a team does not exert effort, his team produces high output with probability

zero. But if both workers in a team exert effort, the interior probability with

which the team produces high output, y = 1, is a symmetric function of its

workers’ types, q : T 2 → (0,1). Let qL := q(L,L), qM := q(L,H) = q(H,L),

and qH := q(H,H) denote the probabilities with which a team composed of

two lows, one low and one high, and two highs produces high output. Then,

q := (qH ,qM ,qL) parameterizes the production function.

We make three standard assumptions. First, teams with higher types are,

on average, more productive

qH > qM > qL.

Second, the production technology is strictly supermodular11

qH − qM > qM − qL.
11Equip the product set T ×T with the partial order � satisfying (H,H) � (H,L) � (L,L) and (H,H) � (L,H) �

(L,L). Then (T × T ,�) is a complete lattice with (H,L)∨ (L,H) = (H,H) and (H,L)∧ (L,H) = (L,L) implying that
q is a supermodular function.
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Third, c is small enough relative to qL that, in the absence of private informa-

tion, it is optimal to induce effort by all workers in all teams,

qL > 2c.

Example 1 (Kremer (1993)’s O-Ring Model). Suppose workers in a team must

complete two independent tasks to produce high output, the interior probability

with which a high (low) completes his task upon exerting effort is pH (pL),

and highs are more likely than lows to complete their task, pH > pL. Then,

qH := pH ∗ pH , qM := pH ∗ pL, and qL := pL ∗ pL. Simple algebra shows that

qH > qM > qL and qH − qM > qM − qL.

2.2 Timing, Information, and Contracts

The initial timing is as follows: first, the manager proposes a contract; second,

after learning his own type, each worker accepts or rejects the proposed con-

tract; third, if any worker rejects, no teams are formed and all parties obtain

zero utility.12 If all workers accept the contract, the subsequent timing is as

follows:

1. Each worker reports his type to the manager.

2. The manager assigns workers to teams.

3. Each worker learns the type of his assigned teammate.

4. Workers exert effort.

5. The manager observes output and compensates each worker.

A full assignment of workers to teams is a one-to-one function ν :N →N
satisfying (i) ν(ν(i)) = i and (ii) ν(i) , i, with the interpretation that ν(i) is

12Limited liability and obedience ensure that all workers have an incentive to accept any incentive feasible
contract (see Observation 1). Hence, the assumption that the manager does not form teams if any worker does
not participate plays no role in our analysis.
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worker i’s teammate. Condition (i) implies that each worker is his teammate’s

teammate. Condition (ii) implies that each worker has a teammate. Letting

P denote the set of full assignments, we define a matching to be a function

associating each vector of reported types with a probability distribution over P ,

µ : T N → ∆(P ).

A wage scheme is a tuple of functions (wi)i∈N := w, one for each worker i, where

worker i’s wage function maps each full assignment, reported type profile, and

output vector to a non-negative wage for that worker,

wi : P × T N ×Y N/2→R+.
13

A contract is a matching and a wage scheme.

A comment about the timing is in order. In step 1, the manager elicits all in-

formation held among her workers. But, in step 3, due to their close interaction,

each worker learns the type of his assigned teammate. Yet, there is no sub-

sequent reporting stage. Contracts are therefore incomplete; mechanisms in

which teammates report each other’s type are ruled out by assumption.14 We

find this a plausible assumption in environments in which the manager is wor-

ried about collusion among her workers or if reporting workers fear retaliation

by their co-workers for making undesirable reports.15 Moreover, maintaining

this assumption throughout the paper allows us to make a meaningful com-

parison between centralized matching and delegated matching. Indeed, any

comparison between the two in which delegated matching strictly outperforms

centralized matching requires the introduction of contractual incompleteness.

Otherwise, by the Revelation Principle, delegated matching would appear as a

mechanism in the present environment, so that delegation could never result
13The co-domain of wi is restricted to the positive reals because workers are protected by limited liability.
14As is well-known, under weak Nash implementation, the manager could obtain full-information profits by

punishing workers with zero wages when their reports about the profile of types in their team disagree and
compensating them for effort when they agree.

15In Section 6, we suggest an approach to endogenize such concerns.
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in strictly higher profits.16

3 The Manager’s Problem

To ease the exposition, we restrict attention to contracts that induce effort by

all workers in all teams. We discuss relaxing this restriction in Section 6 (a

formal analysis can be found in Appendix B).

3.1 Full-Information Benchmark

We first consider the full-information benchmark in which both effort and type

are contractible. Given any matching, the manager optimally compensates

each worker for the cost of effort: each worker receives a wage equal to that

cost, c, if they exert effort, and zero otherwise. As is well-known, since ex-

pected output satisfies strictly increasing differences, the manager then maxi-

mizes (minimizes) profits by matching highs with highs (lows) whenever possi-

ble. We define the notions of positive and negative assortative matching in our

environment before stating this result.

Definition 1. A matching µ : T N → ∆(P ) is a positive assortative matching

(PAM) if, for any type profile t ∈ T N and any assignment ν ∈ suppµ(t) ⊆ P , it

is never the case that there are two workers i and j , ν(i) for which ti , tν(i)

and tj , tν(j). A matching µ : T N → ∆(P ) is a negative assortative matching

(NAM) if, for any type profile t ∈ T N and any assignment ν ∈ suppµ(t) ⊆ P , it

is never the case that there are two workers i and j , ν(i) for which ti = tν(i)

and tj = tν(j).
16See Poitevin (2000) and Mookherjee (2006) for illuminating discussions. In Section 5.3, we exhibit a match-

ing and wage scheme that can be implemented under delegated matching, but not centralized matching, and
explain the fundamental difference between the two environments.
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Theorem (Becker (1973)). In the full-information problem, PAM (NAM) maxi-

mizes (minimizes) expected profits.

It is also straightforward to show that the manager attains identical expected

profits if type is contractable and effort is not, or vice-versa.17 Hence, it is the

interaction of adverse selection and moral hazard that makes the asymmetric-

information problem interesting. We proceed to analyze this case.

3.2 Asymmetric-Information Problem

To define the constraints the manager faces in implementing a matching under

asymmetric information, we need some notation. Given a matching µ and

truthful reporting by all workers, the interim probability with which worker i

matches a high if his type is t ∈ T is pµt (i);18 the event that he is assigned to a

teammate of type t′ ∈ T is F(t,t′)
i ; and the expected wage he receives given his

teammate’s type, and when his team produces output y and all workers exert

effort, is

wt
′
t (y, i) := E[wi(ν, t, y(i,ν(i),y−(i,ν(i)))|F

(t,t′)
i ].

Worker i’s expected utility from honesty (reporting her type truthfully) and obe-

dience (always exerting effort), is therefore,

ūt(i) :=

 p
µ
t (i)

1− pµt (i)


T q(t,H)wHt (1, i) + (1− q(t,H))wHt (0, i)− c

q(t,L)wLt (1, i) + (1− q(t,L))wHt (0, i)− c

 .
17If effort is contractable, but not type, then, as in the full-information case, each worker is compensated for

her effort cost and attains zero utility in any team to which she is assigned, independently of her report. Since
each worker receives zero utility in any team to which she is assigned, she thus has an incentive to report her
type truthfully, so that the manager can implement positive assortative matching.

If, on the other hand, type is contractable, but not effort, then the manager may match highs whenever possible,
i.e. implement positive assortative matching. Within each team, since type is observable, the manager can pay
each worker the minimal amount required for each worker to exert effort (this, of course, depends on the type of
her teammate). As workers are risk neutral, the expected payment to each worker is thus equal to the cost of
effort, so that total expected payments are the same as in the full-information case.

18Formally,
p
µ
t (i) :=

∑
t−i∈TN−1

P r(t−i)
∑
ν∈P

µ(t, t−i)(ν) ∗ 1{tν(i) =H},

where µ(t)(ν) is the probability of ν ∈ P according to µ(t) ∈ ∆(P ) and 1{·} is the indicator function.
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We now describe the incentive constraints. First, each worker must have

a weak incentive to exert effort, given that his teammate exerts effort, in any

team to which he is assigned. The obedience constraint for a worker i ∈ N of

type t ∈ T , given that his teammate has type t′ ∈ T , is therefore

q(t, t′)wt
′
t (1, i)− (1− q(t, t′))wt

′
t (0, i)− c ≥ wt

′
t (0, i). (Ot′

t (i))

Second, workers must be incentivized to report their types truthfully: each

worker’s expected payoff under honesty and obedience must exceed the ex-

pected payoff he receives from misreporting his type and making an optimal

effort decision in each team to which he is assigned. The incentive compati-

bility constraint for worker i ∈ N of type t ∈ T is therefore,

ūt(i) ≥

 p
µ

t̂
(i)

1− pµ
t̂
(i)


T max{q(t,H)wH

t̂
(1, i) + (1− q(t,H))wH

t̂
(0, i)− c,wH

t̂
(0, i)}

max{q(t,L)wL
t̂
(1, i) + (1− q(t,L))wL

t̂
(0, i)− c,wL

t̂
(0, i)}

 ,
(ICt(i))

where t̂ , t. Finally, knowing his own type, each worker must be willing to

accept the contract proposed by the manager. Equivalently, the utility from

honesty and obedience must exceed her outside option of zero. The interim

individual rationality constraint for worker i of type t ∈ T is therefore

ūt(i) ≥ 0. (IRt(i))

We say that a contract (µ,w) is incentive feasible if all obedience constraints,

all incentive compatibility constraints, and all participation constraints are sat-

isfied. The manager's problem is to chose a contract that maximizes profits–

expected output net expected wage payments– subject to the constraint that

the contract is incentive feasible.

3.3 Redundant Constraints

Before proceeding to the analysis of the optimal contract, we make two ob-

servations that reduce the number of constraints. First, the interim individual

14



rationality constraint for each worker is satisfied as long as his obedience con-

straints are satisfied; any non-negative wages satisfying obedience yield him

non-negative expected utility in any team to which he is assigned.

Observation 1. If OH
t (i) and OL

t (i) are satisfied, then IRt(i) is satisfied.

Second, if the obedience constraints for lows are satisfied, highs have a

strict incentive to exert effort after misreporting their type, no matter the type

of their assigned teammate.

Observation 2. If OH
L (i) and OL

L(i) are satisfied, then ICH(i) is satisfied as

long as,

ūH(i) ≥

 p
µ
L(i)

1− pµL(i)


T qHwHL (1, i) + (1− qH )wHL (0, i)− c

qMw
L
L(1, i) + (1− qM)wLL(0, i)− c

 .
In light of Obervation 1 and 2, we henceforth omit participation constraints

and “double deviation" constraints by highs when writing the manager’s prob-

lem.

4 The Optimal Contract

We solve the manager’s problem in three steps. First, we establish that it is

without loss of generality to restrict attention to a simple, and tractable, class

of matchings and wage schemes. Second, given an arbitrary matching in this

class, we identify all optimal wage schemes. Third, given these wage schemes,

we identify all profit-maximizing matchings. Our main results, Theorem 1 and

Theorem 2, fully characterize the optimal wage schemes and matchings.

4.1 Simplifying the Contract Space

The manager’s problem is complex: she faces many constraints and the con-

tract space is large. We greatly simplify her problem by establishing that it is
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without loss of generality to restrict attention to equal treatment matchings, and

independent and anonymous wage schemes.

Definition 2. The matching µ is an equal treatment matching if, for any two

workers of the same type, the interim probability with which each is assigned

to work with a high is the same,

p
µ
t (i) = p

µ
t (j) for all i, j ∈ N and t ∈ T .

Definition 3. The wage scheme w is independent if the wage of any worker

depends only on his own type, the type of his assigned teammate, and the

output his team produces,

wi(ν, ti , t−i ,y) = wi(ν
′, ti , t

′
−i ,y’) when tν(i) = t

′
ν′(i) and y(i,ν(i)) = y

′
(i,ν′(i)).

Definition 4. The wage scheme w is anonymous if expected wages do not

depend on a worker’s identity,

wt
′
t (y, i) = w

t′
t (y, j) for all i, j ∈ N , t, t′ ∈ T , and y ∈ Y .

Lemma 1. For any incentive feasible contract (µ,w), there exists another in-

centive feasible contract, (µ̂, ŵ), that attains at least the same expected profits,

where µ̂ is an equal treatment matching and ŵ is an independent and anony-

mous wage scheme.

The restriction to independent wage schemes is without loss of generality

because each worker’s type and effort decision do not affect the probabili-

ties with which teams other than his own produce high output.19 Restriction

to anonymous wage schemes is without loss of generality because workers
19The result is a straightforward application of the Informativeness Principle (Hölmstrom (1979) and Shavell

(1979)).
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are ex-ante identical and the effort equilibrium the manager implements within

teams is symmetric.20 Finally, restriction to equal treatment matchings is with-

out loss of generality because, for any non-equal treatment matching, the man-

ager attains identical profits using an equal treatment matching that uniformly

randomizes over labelings of workers and then applies the original non-equal

treatment matching and wages.

Lemma 1 simplifies the manager’s problem in two ways. First, any anony-

mous and independent wage scheme may be summarized by eight wages

(wt
′
t (y))t,t′∈T ,y∈Y ∈R8

+,

where wt
′
t (y) denotes the wage given to any worker whose type is t, team-

mate’s type is t′, and whose team produces output y. Second, any equal

treatment matching may be summarized by a single parameter pµH , the interim

probability with which a worker matches a high upon reporting his type as

high.21 LetM denote the set of all equal treatment matchings. It will be useful

to partitionM into equivalence classes wherein two matchings, µ and µ′, are

in the same equivalence class if pµH = pµ
′

H . Three equivalence classes will be

of interest in what follows.

Definition 5 (Assortative Equal Treatment Matchings). An equal treatment

matching µ is a positive assortative matching (PAM) if

p
µ
H =max

µ̃∈M
p
µ̃
H ,

20In contrast to the setting of Winter (2004), who shows that non-anonymous schemes may be useful when
the manager wants to implement a unique Nash Equilibrium, we require only that effort by two workers in a team
is a Nash Equilibrium. Indeed, given the production technology and the assumption of limited liability, requiring
uniqueness of the high effort equilibrium is impossible: low effort by any worker in a team dooms a project to
failure, and effort is costly, so that there is always a Nash Equilibrium in which both workers do not exert effort.

21Let p
µ
L denote the interim probability with which a worker matches a high upon reporting her type as low. In

every matching, the number of highs matched to lows must equal the number of lows matched to highs. Hence,
the ex-ante probability with which a worker is a high and matches a low must equal the ex-ante probability with
which a worker is a low and matches a high, i.e. p(1−pµH ) = (1−p)pµL. Therefore, p

µ
L =

p
1−p (1−p

µ
H ) is determined

by p
µ
H .
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a negative assortative matching (NAM) if,

p
µ
H =min

µ̃∈M
p
µ̃
H ,

and a random matching (RM) if,

p
µ
H = p.

It is easy to show that any PAM (NAM) is a positive (negative) assortative

matching in the sense of Definition 1.

4.2 The Minimization Problem

Given Lemma 1, the manager’s minimization problem is to choose an anony-

mous, independent wage scheme, described by the tuple (wt
′
t (y))t,t′∈T ,y∈Y ∈

R
8
+, to minimize expected wage payments subject to the incentive constraints,

[ICH ] ūH ≥

 p
µ
L

1− pµL


T qHwHL (1) + (1− qH )wHL (0)− c

qMw
L
L(1) + (1− qM)wLL(0)− c


[ICL] ūL ≥

 p
µ
H

1− pµH


T max{qMwHH (1) + (1− qM)wHH (0)− c,wLH(0)}

max{qLwLH(1) + (1− qL)wLH(0)− c,wLH(0)}


[OH

H ] qHw
H
H (1) + (1− qH )wHH (0)− c ≥ wHH (0)

[OL
H ] qMw

L
H(1) + (1− qM)wLH(0)− c ≥ wHH (0)

[OH
L ] qMw

H
L (1) + (1− qH )wHL (0)− c ≥ wHL (0)

[OL
L] qLw

L
L(1) + (1− qL)wLL(0)− c ≥ wLL(0).

The first issue the manager must resolve is standard. In order to incentivize

a low to exert effort, she must pay him a high enough wage for producing

high output relative to what she pays him for producing low output. But, fixing

teammate type, highs are more likely than lows to produce high output. Hence,
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highs must always be paid a strictly positive information rent in order to prevent

them from misreporting their type. We show that, in any optimal wage scheme,

the incentive compatibility constraint for highs and the obedience constraints

for lows bind, and that highs always receive zero wages when they produce

low output.

Lemma 2. In any optimal wage scheme, wHH (0) = 0, wLH(0) = 0 and ICH , OH
L ,

and OL
L bind.

The second issue the manager must resolve is novel to our environment. In

addition to the downward incentive compatibility constraint, ICH , the upward

incentive compatibility constraint, ICL, may also bind. In particular, ICL binds

when the implemented matching exhibits positive (negative) assortativity and

the production technology is strictly log submodular (supermodular).

Definition 6. µ exhibits positive assortativity if pµH > p and negative assor-

tativity if pµH < p.22

Definition 7. The production technology is log supermodular if qH
qM
≥ qM

qL
and

log submodular if qHqM ≤
qM
qL

.

Example 2 (Kremer (1993)’s O-Ring Model Continued). In the O-Ring model,

output probabilities are multiplicative: qH := pH ∗ pH , qM := pH ∗ pL, and qL :=

pL ∗ pL, where 0 < pL < pH < 1. Hence, the production technology is both log

supermodular and log submodular:

qH
qM

=
pH ∗ pH
pH ∗ pL

=
pH
pL

=
pH ∗ pL
pL ∗ pL

=
qM
qL
.

The O-Ring model is therefore a “knife-edge" case.
22By the observation made in Footnote 21, positive assortativity is equivalent to p

µ
H > p

µ
L and negative assor-

tativity is equivalent to p
µ
H < p

µ
L.

19



In these cases, the manager optimally offers two wage schemes: one tar-

geted to lows in which low output is sometimes rewarded with positive wages,

and one targeted to highs in which low output is never rewarded with positive

wages.

Theorem 1 (Optimal Wages).

• If µ exhibits positive (negative) assortativity and the production technol-

ogy is strictly log submodular (supermodular), then either wHL (0) > 0 or

wLL(0) > 0 and both types of workers receive a strictly positive information

rent: ūL > 0 and ūH > 0.

• If µ exhibits positive (negative) assortativity and the production technology

is log supermodular (submodular), then wHL (0) = w
L
L(0) = 0 and only highs

receive a strictly positive information rent: ūL = 0 and ūH > 0.

The result is driven by a feasibility issue that arises when the manager

attempts to hold lows to their reservation utility. If µ exhibits positive (negative)

assortativity and the production technology is log supermodular (submodular),

it is incentive feasible, and also optimal, to do so. But if µ exhibits positive

(negative) assortativity and the production technology is strictly log submodular

(supermodular), there do not exist wages holding lows to their reservation utility

that satisfy both ICL and ICH . The intuition for the result is as given in the

introduction: under strict log submodularity, highs strictly prefer to match a low

after misreporting their type and this is more likely under a matching exhibiting

positive assortativity. Dissuading such deviations requires increasing wages

to highs when they report their type truthfully. But increasing these wages

makes it profitable for lows to masquerade as highs. Consequently, the upward

incentive compatibility constraint binds at the optimal wage scheme and lows

must be paid a strictly positive information rent. We outline this issue, leaving
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the full proof of Theorem 1, along with closed-form expressions of the optimal

wages, to the Appendix.

4.2.1 The Problem of Disassortative Incentives

By Lemma 2, we know that in any optimal wage scheme both obedience con-

straints for lows, OH
L and OL

L, bind:

qMw
H
L (1) + (1− qM)wHL (0)− c = wHL (0),

and,

qLw
L
L(1) + (1− qL)wLL(0)− c = wLL(0).

Hence, the utility lows receive at the optimal wage scheme is entirely deter-

mined by the wages they receive upon producing low output,

ūL =

 p
µ
L

1− pµL


T qMwHL (1) + (1− qM)wHL (0)− c

qLw
L
L(1) + (1− qL)wLL(0)− c

 =
 p

µ
L

1− pµL


T wHL (0)wLL(0)

 .
A natural approach to solving the manager’s problem, then, is to minimize

wage payments to lows, i.e. set wHL (0) = w
L
L(0) = 0, so that lows do not obtain

rent in excess of their reservation utility, ūL = 0. Indeed, it is straightforward to

show that it is optimal to do so when µ exhibits positive (negative) assortativity

and the production technology is log supermodular (submodular).

What goes wrong in the other cases? By Lemma 2, wHH (0) = w
L
H(0) = 0 in

any optimal wage scheme. Hence, when ūL = 0, the incentive compatibility

constraint for lows simplifies to,

ūL = 0 ≥

 p
µ
H

1− pµH


T max{qMwHH (1)− c,0}

max{qLwLH(1)− c,0}

 . (ICL)

We see that if wHH (1) >
c
qM

(wLH(1) >
c
qL

), then regardless of the value of wLH(1)

(wHH (1)), a low could misreport his type and obtain strictly positive utility by

exerting effort only when matched with a high (low).
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It turns out, however, that there do not exist wages wHH (1) ≤ c
qM

and wLH(1) ≤
c
qL

that also satisfy the incentive compatibility constraint for highs, ICH , if µ ex-

hibits positive (negative) assortativity and the production technology is strictly

log submodular (supermodular). In other words, in these cases, it is impossible

to satisfy both ICL and ICH while keeping lows to their reservation utility. To

see why, notice that the payoff to highs from truth-telling is given by,

ūH =

 p
µ
H

1− pµH


T qHwHH (1)− cqMw

L
H(1)− c

 ,
while the payoff to deviating is given by, p

µ
L

1− pµL


T qHwHL (1) + (1− qH )wLL(0)− c

qMw
L
L(1) + (1− qM)wLL(0)− c

 =
 p

µ
L

1− pµL


T 

qH
qM
c − c

qM
qL
c − c

 ,
where the equality follows by setting wHL (0) = wLL(0) = 0 and noticing that

wHL (1) =
c
qM

and wLL(1) =
c
qL

by the binding obedience constraints, OH
L and OL

L.

Eliminating effort costs from both sides of the equation, we obtain a simple

expression for ICH , p
µ
H

1− pµH


T qHwHH (1)qMw

L
H(1)

 ≥
 p

µ
L

1− pµL


T 

qH
qM
c

qM
qL
c

 . (ICH )

Inspecting ICH , we notice that if µ exhibits positive assortativity, so that

p
µ
H > p, and hence pµH > p

µ
L, then a high is more likely to match a low after mis-

reporting his type than after reporting truthfully. But the production technology

is strictly submodular, so that qH
qM
< qM

qL
, then a high strictly prefers to match

a low after misreporting. So, in order to prevent the high from deviating, the

manager must give him a high enough wage, wHH (1), when he reports truthfully,

matches a high, and produces high output. Unfortunately for the manager, if

wLH(1) ≤ c
qM

, then it must be thatwHH (1) >
c
qM

in order to satisfy ICH . Hence, any
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wage scheme satisfying ICH violates ICL. See Figure 1 for an illustration.23

(a) Strictly Log Supermodular(qH = 7
16 ) (b) Knife-Edge Case (qH = 8

16 )

(c) Strictly Log Supermodular (qH = 9
16 )

Figure 1. Positive Assortative Matching: N = 4, qM = 4
16 , qL =

2
16 , p = 1

2 , ūL = 0.

When it is infeasible to hold lows to their reservation utility, both incentive

compatibility constraints bind at the optimal wage scheme, and both types re-

ceive information rents. Indeed, giving higher wages to highs to prevent down-

ward deviations entails giving higher wages to lows to prevent upward devia-

tions, and vice-versa. Luckily, the manager can resolve this cyclicality by giv-

ing lows “low-powered" incentives, simultaneously increasing their wages upon

producing low and high output, and highs “high-powered" incentives, only in-

creasing their wages upon producing high output. These schemes come at a

cost, however, and may induce the manager to distort the matching in order to

save on expected wage payments. We turn to this issue next.
23A similar issue occurs when the technology is strictly supermodular and µ exhibits negative assortativity.
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4.3 The Maximization Problem

Maximizing (minimizing) the assortativity of the implemented matching, pµH ,

clearly maximizes (minimizes) expected output; indeed, any such matching

is a positive (negative) assortative matching. Absent incentive costs, PAM is

therefore optimal, as pointed out in Section 3.1. It turns out, however, that

when the production technology is strictly log submodular, optimal expected

wage payments under asymmetric information are strictly increasing in p
µ
H .

A non-trivial rent-efficiency tradeoff arises. Theorem 2, our main result, fully

characterizes the optimal matchings in terms of the parameters of the model.

Theorem 2 (Optimal Matching). If the production technology is log supermod-

ular, then PAM is the unique optimal matching. If the production technology is

strictly log submodular, however, there exist two cutoff values on the cost of

effort, 0 < c < c̄, such that,

1. PAM is the unique optimal matching if and only if c < c;

2. RM is the unique optimal matching if and only if c < c < c̄; and,

3. NAM is the unique optimal matching if and only if c > c̄.

Further, under strict log submodularity, RM becomes optimal for all effort costs

as highs vanish from the population and NAM becomes optimal for all effort

costs as lows vanish from the population.

A number of aspects of Theorem 2 are worthy of attention. First, log su-

permodularity is a sufficient condition for PAM, coinciding with the condition for

PAM found by Smith (2006). Second, under strictly log submodularity, PAM

is suboptimal in a variety of circumstances–both when the effort cost is suf-

ficiently high and when the prior probability of highs is close enough to zero
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or one. Third, despite the complex matchings the manager has available to

her, the optimal matchings are simple. To implement PAM (NAM), the man-

ager need only match highs with highs (lows), uniformly randomizing which

worker is matched with a low (high) in the case of an odd number of highs. To

implement RM, the manager need only commit to a full assignment and disre-

gard any reports she receives.24 Fourth, the optimal matchings we identify are

unique up to their assortativity properties, outside the special cases in which

c = c̄ and c = c. Fifth, our proof provides a full quantitative characterization

of the optimal matchings, with exact values of the cutoffs c and c̄ as deter-

mined by the prior p and the production parameters q.25 See Figure 2 for an

illustration.

Figure 2. Optimal Matchings: qH = 7
16 , qM = 4

16 , qL =
2
16 .

4.3.1 Intuition

We discuss the driving forces behind each result. From Theorem 1, we know

that, under log supermodularity, any matching exhibiting positive assortativity
24Any matching which does not depend on reports, i.e. any constant function µ : T N → ∆(P ), is a random

matching according to our definition. However, there are non-constant random matchings.
25The formulas are determined by the likelihood ratio of lows to highs, 1−p

p , complementarity in the production

function in terms of levels, qH + qL − 2qM , and in terms of ratios, qMqL −
qH
qM

. The exact expression is given in the
proof of the Theorem in the Appendix.
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minimizes expected wage payments to lows– lows are held to their reserva-

tion utility. It turns out that, in addition, expected wage payments to highs are

minimized under PAM. Indeed, after misreporting his type, a high is more likely

to match a low, obtaining a utility gain proportional to qM
qL

instead of qH
qM

. And,

under log supermodularity, qMqL ≤
qH
qM

. Hence, to deter downward deviations, ex-

pected wage payments to highs must decrease as the implemented matching

becomes more assortative. It follows that the output-efficient matching, PAM,

is optimal.

From Theorem 1, we also know, however, that in the case of strict log sub-

modularity, if the manager implements PAM, then lows must obtain wage pay-

ments in excess of those at which they attain their reservation utility. Apply-

ing the opposite logic of what we described previously, as the implemented

matching becomes more assortative, wage payments to highs must increase to

deter downward deviations. It follows that total expected wage payments are

increasing in assortativity. Hence, if the reduction in incentive costs accrued

from implementing an inefficient matching is sufficient to compensate the man-

ager for the loss in expected output, she optimally distorts PAM. This happens

precisely when c > c.

When the manager distorts PAM, why does she sometimes choose RM and

other times NAM? As the assortativity of the implemented matching decreases,

the slope of optimal expected wage payments decreases precisely at the point

at which the implemented matching becomes random, pµH = p. This happens

because, below this point, the manager no longer saves money by reducing

wage payments to lows; indeed, lows are held to their reservation utility at

the optimal wage scheme for any matching exhibiting negative assortativity.

It follows that any reduction in incentive costs when reducing pµH in the region

[0,p] owes to decreasing expected wage payments to highs only. Hence, there

exists an interval of effort costs, (c, c̄), at which it is only optimal to distort the

matching until the point at which pµH = p, so that only RM is optimal. If, however,

c > c̄, then the gain of reducing payments to highs by reducing the assortativity
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of the matching becomes so large that it is optimal to implement NAM. Figure

3 depicts expected profits as a function of pµH in all three cases.

0 1p

pH
μ

Profits

(a) PAM Optimal (c = 1
50 )

0 1p

pH
μ

Profits

(b) RM Optimal (c = 1
20 )

0 1p

pH
μ

Profits

(c) NAM Optimal (c = 1
5 )

Figure 3. Profits under strict log submodularity: qH = 7
16 , qM = 4

16 , qL =
2
16 , p = 1

2 .

We now explain why PAM becomes suboptimal for all effort costs as the

probability of highs becomes extreme. As p approaches one or zero, it is

clear that the difference in expected output between PAM and RM (or any

other matching) disappears linearly. But it is less clear that the difference in

expected wage payments under PAM and RM disappears sublinearly. This

happens for the following reason. In order to implement PAM, the manager

must give strictly positive utility to lows to deter upward deviations. This implies

that she must also give highs an additional utility payment to deter downward

deviations, relative to what she gives them when implementing RM. Hence,

as p approaches one (zero), so that lows (highs) vanish in the population,

the mere existence of lows (highs) means that the manager must pay highs

(lows) an additional utility payment along the entire sequence. Expected wage

payments, therefore, vanish at a slower rate than the actual population of lows

(highs).

A final result remains to be explained: why does NAM come to dominate RM
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as p approaches one, but not as p approaches zero? Under both NAM and

RM, wage payments to lows are minimized. NAM and RM differ, however, in

terms of expected wage payments to highs–the less assortative the matching,

the lower these payments. When p is small, so that highs are rare, the differ-

ence between RM and NAM in terms of wage payments to highs is outweighed

by the productivity gain of RM relative to NAM. But as p grows large, so that

highs are common, productivity gains matter more than wage payments.

5 Delegated Matching

As we have seen, it may be costly to implement the efficient matching in a cen-

tralized workplace in which a manager asks each worker to report his type, and

uses these reports to assign workers to teams. But what if, instead, the man-

ager did not ask for reports, and simply allowed workers to sort themselves?

A familiar tradeoff arises. On one hand, such an arrangement entails a loss

of control for the manager: She can no longer tailor wages to reports. But on

the other hand, the manager can exploit local information: It is reasonable to

think that workers possess superior information about one another’s charac-

teristics and that they might use this information to sort efficiently.

We formalize this tradeoff by considering an environment in which there is

no reporting stage, but in which, during the process of finding a teammate,

workers commonly learn the true type profile. Using this knowledge, workers

then form self-enforcing teams.

5.1 Timing, Information, and Contracts

The environment is the same as in Section 2.1. Moreover, the initial timing is

the same as in the case of centralized matching: First, the manager proposes

a contract; second, after learning his own type, each worker accepts or rejects

the proposed contract; third, if any worker rejects, no teams are formed and all

parties obtain zero utility. In contrast to the centralization environment, how-
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ever, there is no reporting stage. Instead, workers learn one another’s types

and use this information to form teams. Formally, the timing after contracts

have been signed is as follows:

1. Workers commonly learn each other’s types.

2. Workers form teams.

3. Workers exert effort.

4. The manager observes output and compensates each worker.

A delegation contract is thus a wage scheme w := (wi)i∈N in which each wage

function wi depends only on a worker’s identity, the realized assignment, and

observed output, i.e. for all i,

wi : P ×Y N/2→R+.

As before, we focus on contracts that induce effort by every worker in every

team, leaving a discussion of this restriction to Section 6.

5.2 Manager’s Problem

Though not formally part of a contract, we may think of the manager as choos-

ing a matching function, µ : T N → ∆(P ), in addition to a wage scheme w. In

contrast to the centralization environment, however, to implement a matching

µ, we require that any assignment realized with positive probability under µ

must be self-enforcing given w in the sense that it is in the core. We call any

matching satisfying this property stable.

Definition 8. Given a wage scheme w, an assignment ν ∈ P is in the core if,

for any worker i ∈ N and any worker that is not i’s teammate, j , ν(i),

1. i and ν(i) exerting effort is a Nash Equilibrium; and
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2. i and j cannot form a deviating team and select a Nash Equilibrium mak-

ing each strictly better off.

A matching µ is stable with respect to w if for any realized type profile t ∈ T N

and any assignment ν ∈ supp µ(t), ν is in the core given w.

The manager's delegation problem is to choose a matching and a wage

scheme, (µ,w), to maximize profits, subject to the constraint that µ is stable

given w.

5.3 An Implementation Unattainable Under Centralized Matching

Before proceeding to identify the optimal delegation contract, we point out that

some combinations of matchings and wage schemes that can be implemented

under delegation cannot be implemented under centralized matching.26 For

instance, suppose the manager pays each worker a wage of c
qL

if his team

produces high output and 0 if his team produces zero output. Then, PAM is

stable respect to this wage scheme. To see this, note that exerting effort is an

equilibrium even in teams composed of two lows; in such a team, the payoff

from exerting effort when one’s teammate does is qL
c
qL
− c = 0, the payoff of

not exerting effort. In addition, there are no strictly profitable deviating teams;

two distinct highs are never matched with a low under PAM. Finally, a low can

never form a strictly profitable team with a high, as any such high would be

made weakly worse off.

Notice, however, that PAM cannot be implemented using this wage scheme

under centralized matching. If the manager were to ask workers to report their

type in order to implement PAM, lows would never have an incentive to report

their type truthfully. Indeed, as wages do not depend on type and exerting ef-

fort is an equilibrium in any team, every worker strictly prefers to match a high.

Hence, under PAM, lows have a strict incentive to masquerade as highs. The
26The opposite holds as well; Lemma 3, below, shows that under delegated matching anonymous and inde-

pendent wage schemes can only implement PAM.
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fundamental difference between delegated matching and centralized assign-

ment is thus that, under delegated matching, the manager commits not to ask

workers report their type and instead empowers workers to use the information

they have about one another to sort themselves into teams.

5.4 Optimal Delegation Contract

We now show that the contract described in Section 5.3 is actually optimal. As

before, say that a delegation contract is anonymous if it does not depend on the

worker’s identity and independent if the worker’s wage depends only on output

produced in her own team. An anonymous, independent wage scheme may

therefore be represented by a pair (w(1),w(0)) ∈R2
+, specifying a non-negative

wage following each output level. It turns out that the only stable matchings the

manager can implement with respect to an anonymous and independent wage

scheme are PAM.

Lemma 3. If w is an anonymous and independent wage scheme, then µ is

stable with respect to w only if µ is a PAM.

Proof. Suppose that w is an anonymous and independent wage scheme and

that µ is not a PAM. Then, there exists some type profile t ∈ T N , assignment

ν ∈ supp µ(t), and workers i and j , ν(i) such that ti , tν(i) and tj , tν(j).

Without loss of generality, suppose that ti = tj =H , so that tν(i) = tν(j) = L.

To show that µ is not stable with respect to w, we show that ν is not in the

core. Towards contradiction, suppose that ν is in the core. Then, in each team

formed under ν, it must be that effort by both workers in teams (i,ν(i)) and

(j,ν(j)) is a Nash Equilibrium. This is the case if and only if,

qMw(1) + (1− qM)w(0)− c ≥ w(0) ⇐⇒ w(1)−w(0) ≥ c
qM

> 0.
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But, since qH > qM , this implies that,

qHw(1) + (1− qH )w(0)− c > qMw(1) + (1− qM)w(0)− c.

It follows that i and j obtain a strictly higher payoff by forming a deviating team

and exerting effort. Hence, ν cannot be in the core, our desired contradiction.

But PAM is efficient! Hence, the anonymous and independent wage scheme

that minimizes expected wage payments yields the manager at least the same

profits as any other delegation contract.

Lemma 4. (w(1),w(0)) = ( cqL ,0) is an optimal delegation contract.

Proof. As observed previously, PAM is stable with respect to ( cqL ,0). Moreover,

due to limited liability, wages must always exceed zero after the production of

low output. Hence, to ensure that effort is optimal when all workers are lows, a

realization that occurs with positive probability, expected wages following high

output must be at least c
qL

. The result then follows because PAM is output-

efficient and wage payments are minimized following the production of low and

high output.

Two comments about the optimal contract are in order. First, since wages

depend only on the output produced in a worker’s own team, each worker

prefers to match a high. Due to common knowledge of types, a high is only

willing to match a low if he has no better option, i.e. all other highs are matched

with highs already. But these forces lead to PAM, the efficient matching. This

is the local information benefit of delegation. Second, as wages cannot be

tailored to reported types, both highs and lows receive strictly positive expected

utility at the optimal contract; lows receive strictly positive expected utility in the

case in which they match a high, and highs receive strictly positive expected
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Figure 4. Optimality of Delegation (“D"): N →∞, qH = 7
16 , qM = 4

16 , qL =
2
16 .

utility no matter their teammate. This is the loss of control cost of delegation.

Delegation is optimal if and only if the local information benefit outweighs the

loss of control cost.

5.5 Optimality of Delegation

Theorem 3, our final result, identifies sufficient conditions under which delega-

tion outperforms centralized assignment. In its statement, and in the subse-

quent discussion, we abuse notation and let PAM, RM, and NAM denote the

scenarios in which the manager chooses centralized assignment and imple-

ments each of these matchings at minimal expected cost.

Theorem 3 (Optimality of Delegation). If the production technology is log su-

permodular, then delegation is strictly suboptimal. If the production technology

is strictly log submodular, however, then in the limit as the number of workers

grows large, there exists an effort cost c̃ ∈ (0,1) and a prior p̃ ∈ (0,1) such that

delegation is optimal if and only if c ≤ c̃ and p ≤ p̃.

See Figure 4 for an illustration and the proof of Theorem 3 for exact expres-

sions of c̃ and p̃.
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(a) D1: Delegation Optimal when RM
Optimal.

(b) D2: Delegation Optimal when PAM
Optimal.

Figure 5. Decomposition of Optimal Delegation Region.

To understand the role of the conditions that production is strictly submod-

ular and N is large, it is instructive to recall the logic behind Theorem 2. Un-

der strict log submodularity, a rent-efficiency tradeoff arises because a high

worker, counterintuitively, would rather match a low than a high after misre-

porting his type. But as the number of workers in the firm increases, the prob-

ability with which a worker is assigned to work with a teammate with the same

reported type approaches one. Hence, the probability with which a deviating

high matches a low after misreporting his type approaches one. The two con-

ditions together ensure that incentive costs under PAM exceed those under

the optimal delegation contract; the first ensures that there is a rent-efficiency

tradeoff, while the second ensures that this tradeoff is large enough. Notice

that if the joint distribution over type profiles was such that there were always

an even number of highs, then no condition on N would be required.

One additional condition, that the probability of highs, p, is small enough, is

required to ensure that delegation outperforms PAM. This ensures that the loss

of control under delegation is sufficiently small. In particular, as the probability

of highs becomes small, under delegation, the rent paid to workers on average

shrinks to zero because a low obtains zero expected utility when matched with

another low. However, under centralized assignment, the mere existence of

highs makes incentivizing truth-telling by lows costly. Hence, when p is small
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enough, delegation results in smaller expected wage payments than PAM. See

Figure 5b for a depiction of the region in which PAM is optimal under central-

ization, but delegation outperforms PAM.

The final condition, that the cost of effort c is small enough, is the most in-

teresting. Under centralized assignment, when talent is scarce and the cost of

effort is high enough, RM dominates PAM; the manager prefers to introduce

productive inefficiency to reduce wages. We show, however, that there is a

region in which RM is optimal under centralization, but delegation is optimal

overall (see Figure 5a). This result owes to the local information benefit of

delegation. Rather than commit to a distorted matching and elicit reports, the

manager would rather allow workers to sort themselves because workers, uti-

lizing common knowledge of each other’s types, will sort efficiently. In other

words, if a manager contemplates distorting the efficient matching in order to

pay lower wages, there may be another option: write a “pay-for-performance"

contract that does not depend on non-verifiable reports, and simply allow work-

ers to sort themselves.

We conclude our analysis of delegation by remarking that the tradeoff be-

tween centralized matching and delegation is interesting only in the case in

which production is supermodular. If the production technology were to be

submodular, then our analysis of the cost-minimizing wage scheme given NAM

indicates that expected wage payments are strictly lower than under delegated

matching. Moreover, endogenous sorting leads to PAM, which is inefficient

given a submodular production technology. Hence, centralized matching dom-

inates delegation both in terms of extracting rent and productive efficiency.

6 Discussion

Our analysis identifies a new channel by which asymmetric information, in the

form of hidden effort and private information, distorts PAM. For strictly log sub-

modular production technologies, more productive workers benefit more from
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matching less productive workers after misreporting their type, leading to the

problem of disassortative incentives (Theorem 1). Disassortative incentives

give rise to a novel rent-efficiency tradeoff: if the cost of effort is sufficiently

high, then either RM or NAM is optimal. Furthermore, RM becomes optimal

for all effort costs as talent becomes scarce and NAM becomes optimal for all

effort costs as talent becomes abundant (Theorem 2). We investigate the im-

plications of these results for the optimal management of teams inside the firm,

and find conditions under which delegating the sorting problem to workers out-

performs centralized assignment (Theorem 3). Together, our results rationalize

recent evidence of non-assortative matching inside of firms.

We conclude by discussing two important assumptions maintained in our

analysis. First, we have assumed, but not verified, that the manager finds it

optimal to implement effort by all workers. When talent is scarce, so that the

prior probability of highs is small, implementing effort by all workers is clearly

optimal. Hence, the distortion of PAM we identify is robust to alternative ef-

fort implementations. When talent is abundant, however, it is not immediate

that inducing effort by all workers is optimal. Hence, it is no longer clear that

distorting PAM is optimal. In Appendix B, in the case in which talent is abun-

dant and the firm is large, we provide conditions on the production function,

stronger than those of strict log submodularity, under which NAM and effort

by all workers outperforms PAM and any effort implementation. It follows that

distorting PAM is globally optimal in these cases.

Second, we do not investigate mechanisms that provide information to the

manager after teams have been formed. While relaxing this assumption is the-

oretically interesting, we find this restriction plausible in environments in which

peer evaluation is ineffective at generating reliable reports. As previously men-

tioned, two explanations for why this may be the case are that peer reports

may be subject to collusion and reporting parties may fear retaliation by their

co-workers (see Che y Yoo (2001), who make a similar non-contractability as-

sumption, for a discussion of the former point and Chassang y Zehnder (2019)
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for recent work related to the latter point). An interesting, though challeng-

ing, direction for future research would be to study whether the distortion we

identify holds in a dynamic contracting environment in which information about

one’s teammate arrives over time and the manager demands contracts to be

robust to collusion and/or that individual reports cannot be identified by the

manager’s chosen matching.
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A Proofs

A.1 Proof of Lemma 1

Take an arbitrary incentive feasible contract (µ,w). Form a partition of workers

Π := {π1, ...,πK}, with |πi | = Ni > 0, in which workers in the same partition ele-

ment πi face the same interim probabilities, (pπiH ,p
πi
L ), under µ. Now, define a

set of workers I := {ι1, ι2, ..., ιK} such that ιk ∈ πk and expected wage payments

to ιk are minimized across all workers in πk.

To construct an independent wage scheme, for each partition element πk
and every worker i ∈ πk, if i’s type is t, his teammate’s type is t′, and his team

produces output y, then set his wage equal to the expected wage given to ιk
when ιk ’s type is t, his teammate’s type is t′, and his team produces output

y. By construction, this scheme satisfies all incentive constraints given µ and

weakly decreases the manager’s expected wage payments. Abusing notation,

let it be denoted by (wt
′
t (y, ι))t,t′∈T ,y∈Y ,ι∈I .

Now, before applying the matching µ, uniformly randomize over the set of all

permutations of the N workers. In the resulting matching µ̂, each worker has

interim probabilities pµ̂H =
∑K
i=1

Ni
N p

πi
H and pµ̂L =

∑K
i=1

Ni
N p

πi
L so that µ̂ satisfies

equal treatment. Take the corresponding expectation over wages, i.e. if a

worker’s type is t, his teammate’s type is t′ and his team produces output y,

then set his wage equal to,

ŵt
′
t (y) =

∑
ι∈I

Ni
N
wt
′
t (y, ι).

Call the resulting wage scheme ŵ. By construction, (µ̂, ŵ) is incentive feasible,

expected output under µ̂ is identical to expected output under µ, and expected

wage payments under w are at least as large as under ŵ. Hence, (µ̂, ŵ) attains

at least the same profits as (µ,w).27

27We thank Juuso Toikka for suggesting this short proof. A longer proof establishing that equal treatment
matchings strictly outperform all non-equal treatment matchings when RM is optimal is available upon request.
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A.2 Proof of Lemma 2

We first show that wHH (0) = w
L
H(0) = 0 in any optimal anonymous, independent

wage scheme w := (wt
′
t (y)). There are two cases to consider. First, consider

the case in which ūL = 0 at the optimal wage scheme. In this case, if either

wHH (0) > 0 or wLH(0) > 0, ICL would be violated; lows could misreport their type,

never exert effort, and attain strictly positive expected utility. Second, consider

the case in which ūL > 0 at the optimal wage scheme. In this case, at least

one of the following conditions must be satisfied: (i) wHL (1) −wHL (0) > c
qM

, (ii)

wLL(1) −wLL(0) > c
qL

, (iii) wLL(0) > 0, or (iv) wHL (0) > 0. We claim that if either

wHH (0) > 0 or wLH(0) > 0, then we can construct an alternative wage scheme

ŵ := (ŵt
′
t (y)) which yields the manager strictly higher profits, contradicting the

supposed optimality of w. Suppose wHH (0) > 0. Then, we can construct ŵ as

follows. Modify w so that ŵHH (0) = 0 and ŵHH (1) = w
H
H (1) +

(1−qH )
qH

wHH (0). Then,

ūH is unchanged, all incentive constraints for highs are satisfied, and the value

of the right-hand side of ICL strictly decreases. Hence, there exists an ε > 0 by

which we may reduce some wage payment to lows and satisfy all obedience

and incentive constraints: in case (i), set ŵHL (1) = w
H
L (1)− ε; in case (ii), set

ŵLL(1) = w
L
L(1) − ε; in case (iii), set ŵLL(0) = w

L
L(0) − ε; and in case (iv), set

ŵHL (0) = w
H
L (0)−ε. It follows that ŵ strictly increases the manager’s profits and

so it must be the case that wHH (0) = 0 in any optimal wage scheme. A similar

argument shows that wLH(0) > 0 as well.

To show that ICH must bind in any optimal wage scheme, we first show that

either OL
H or OH

H must be slack. Since wHH (0) = w
L
H(0) = 0 in any optimal wage

scheme, if both OL
H and OH

H bind, then ūH = 0. On the other hand, the payoff

to deviating is, p
µ
L

1− pµL


T qHwHL (1) + (1− qH )wHL (0)− c

qMw
L
L(1) + (1− qM)wLL(0)− c

 ≥
 p

µ
L

1− pµL


T (

qH
qM
− 1)c+wHL (0)

(qMqL − 1)c+w
L
L(0)

 ,
where the inequality follows because OH

L and OL
L must be satisfied in any in-
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centive feasible wage scheme. But since qH
qM
− 1 > 0 and qM

qL
− 1 > 0, the right-

hand side of the inequality must be strictly positive. As optimal wage schemes

must be feasible, it follows that either OH
H or OL

H must be slack.

Now, towards contradiction, suppose that ICH is slack at the optimal wage

scheme w. Since either OH
H or OL

H must be slack, we may then reduce wHH (1)

or wHL (1) by a small amount (depending on whetherOH
H orOL

H is slack) and still

satisfy all incentive constraints for highs. This modification does not affect OH
L

and OL
L and weakly decreases the right-hand side of ICL. Hence, all incentive

constraints for lows remain satisfied as well. As the manager’s profits must

strictly increase in this modified incentive feasible contract, w could not have

been optimal, our desired contradiction.

Finally, we show that OH
L and OL

L must bind. Towards contradiction, sup-

pose that OH
L does not bind at an optimal contract w. Consider a modified

contract ŵ, where, for a small ε > 0, ŵHL (0) = w
H
L (0) + ε. Then, we may set

ŵHL (1) = wHL (1) −
(1−qM )
qM

ε, so that ūL is unchanged. Notice that if ε is small

enough, however, OH
L remains slack. Further, the right-hand side of ICH

strictly decreases:

qHŵ
H
L (1) + (1− qH )ŵHL (0) = qHwHL (1) + (1− qH )ŵHL (0)−

qH − qM
qM

ε

< qHw
H
L (1) + (1− qH )wHL (0).

Since either OH
H or OL

H is slack in any optimal contract, as shown previously,

we may then reduce wHH (1) or wLH(1) by a small amount and strictly increase

the manager’s profits while satisfying all incentive constraints, contradicting the

supposed optimality of w. A similar argument shows that OL
L binds as well.
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A.3 Proof of Theorem 1

Simplifying the Manager’s Minimization Problem

We first simplify the manager’s objective function. Let pµ(H,H) = pp
µ
H
N
2 , pµ(L,L) =

(1−p)pµL N2 , and pµ(H,L) = ((1−p)pµL+p(1−p
µ
H ))

N
2 denote the expected number of

teams composed of two highs, a high and a low, and two lows. In any matching,

it must be the case that the ex-ante probability a worker is a low and matches

a high equals the ex-ante probability a worker is a high and matches a low, i.e.

(1− p)pµL = p(1− p
µ
H ). Hence, pµ(H,L) = ((1− p)pµL + p(1− p

µ
H ))

N
2 = p(1− pµH )N =

(1− p)pµLN . The manager’s expected wage payments are therefore given by,

C(µ) =pµ(H,H)

[
qH(2w

H
H (1)) + (1− qH )(2wHH (0))

]
+ pµ(H,L)

[
qMw

L
H(1) + (1− qM)wLH(0)

]
︸                                                                                           ︷︷                                                                                           ︸

Expected Wage Payments to Highs

+

p
µ
(L,L)

[
qL(2w

L
L(1)) + (1− qL)(2wLL(0))

]
+ pµ(H,L)

[
qMw

H
L (1) + (1− qM)wHL (0)

]
︸                                                                                       ︷︷                                                                                       ︸

Expected Wage Payments to Lows

=N (pūH + (1− p)ūL + c).

As N and c are positive, it suffices to consider choosing wages to minimize the

expected information rent paid per worker,

γ(µ) := pūH + (1− p)ūL.

We now utilize Lemma 2 to re-write the constraints of the manager’s prob-

lem in terms of wage payments to highs, wHH (1) and wLH(1), and the utility

payment to lows ūL. By Lemma 2, wHH (0) = w
L
H(0) = 0 in any optimal wage

scheme. Hence, ICH simplifies to p
µ
H

1− pµH


T qHwHH (1)− cqMw

L
H(1)− c

 ≥
 p

µ
L

1− pµL


T qHwHL (1) + (1− qH )wHL (0)− c

qMw
L
L(1) + (1− qM)wLL(0)− c

 .
Further, by Lemma 2, we know that obedience constraints OH

L and OL
L bind
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in any optimal wage scheme. These constraints may be written as difference

equations wHL (1)−wHL (0) = c
qM

and wLL(1)−wLL(0) = c
qL

. Substituting them into

ICH , we obtain p
µ
H

1− pµH


T qHwHH (1)− cqMw

L
H(1)− c

 ≥
 p

µ
L

1− pµL


T wHL (0)wLL(0)

︸               ︷︷               ︸
=ūL

+

 p
µ
L

1− pµL


T 

qH
qM
c − c

qM
qL
c − c

 .

The simplified manager’s problem, written in terms of ūL, w
H
H (1), and wLH(1) is

therefore,

min
(ūL,w

H
H (1),w

L
H (1))∈R

3
+

p

 p
µ
H

1− pµH


T qHwHH (1)− cqMw

L
H(1)− c

+ (1− p)ūL

subject to

[ICH ]

 p
µ
H

1− pµH


T qHwHH (1)− cqMw

L
H(1)− c

 ≥ ūL +
 p

µ
L

1− pµL


T 

qH
qM
c − c

qM
qL
c − c


[ICL] ūL ≥

 p
µ
H

1− pµH


T max{qMwHH (1)− c,0}

max{qLwLH(1)− c,0)}


[OBHH ] qHw

H
H (1)− c ≥ 0

[OBLH ] qMw
L
H(1)− c ≥ 0.

Case 1: µ exhibits positive (negative) assortativity and the production technology is log

supermodular (submodular).

The derivation in Section 4.2.1 establishes that, when wLL(0) = wHL (0) = 0,

wLL(1) =
c
qL

and wHL (1) =
c
qM

, so that ūL = 0, there exist wages wHH (1) and wLH(1)

at which both ICH and ICL are satisfied. By Lemma 2, ICH must bind at any

optimal wage scheme. Observing that the slope of the manager’s isocost curve

and that of ICH coincide, the manager is indifferent between any wages on the
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ICH line. The optimal wages for highs are therefore wHH (0) = w
L
H(0) = 0 and

any wHH (1) ≥ 0 and wLH(1) ≥ 0 satisfying,

ūH =

 p
µ
H

1− pµH


T qHwHH (1)− cqMw

L
H(1)− c

 =
 p

µ
L

1− pµL


T 

qH
qM
c − c

qM
qL
c − c

 > 0.

Case 2: µ exhibits positive (negative) assortativity and the production technology is

strictly log submodular (supermodular).

The derivation in Section 4.2.1 establishes that, in this case, there is no wage

scheme satisfying ICH and ICL that has ūL = 0. By the binding constraintsOH
L

and OL
L, this immediately implies that either wLL(0) > 0 or wHL (0) > 0.

To find the optimal wages, we simplify the manager’s problem further by

eliminating ūL, so that she need only choose wHH (1) and wLH(1). To do this,

observe that, since ICH binds in any optimal wage scheme,

ūL =

 p
µ
H

1− pµH


T qHwHH (1)− cqMw

L
H(1)− c

−
 p

µ
L

1− pµL


T 

qH
qM
c − c

qM
qL
c − c

 . (IC ′H )

Substituting this expression into ICL, and into the objective function, we obtain
the minimization problem,

min
(wHH (1),w

L
H (1))∈R

2
+

 p
µ
H

1− pµH


T qHwHH (1)− cqMw

L
H (1)− c

− (1− p)
 p

µ
L

1− pµL


T 

qH
qM
c − c

qM
qL
c − c


subject to

[ICL]

 p
µ
H

1− pµH


T qHwHH (1)− cqMw

L
H (1)− c

−
 p

µ
L

1− pµL


T 

qH
qM
c − c

qM
qL
c − c

 ≥ p
µ
H

1− pµH


T max{qMwHH (1)− c,0}

max{qLwLH (1)− c,0}


[OBHH ] qHw

H
H (1)− c ≥ 0

[OBLH ] qMw
L
H (1)− c ≥ 0.
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We now show that we can eliminate the “max" operators on the right-hand

side of ICL.

Claim 1. In any optimal wage scheme, wHH (1) ≥ c
qM

and wLH(1) ≥ c
qL

.

Proof. Suppose, towards contradiction, that wLH(1) <
c
qL

in some optimal wage

scheme. Then, to satisfy ICL, it must be the case that wHH (1) >
c
qM

. ICL thus

simplifies to,  p
µ
H

1− pµH


T (qH − qM)wHH (1)qMw

L
H(1)− c

 ≥
 p

µ
L

1− pµL


T 

qH
qM
c − c

qM
qL
c − c

 .
Now, decrease wHH (1) and increase wLH(1) until the left-hand side attains its

original value. Inspecting the manager’s objective function, this strictly de-

creases expected wage payments, contradicting the supposed optimality of

the original wage scheme. A similar proof shows that wHH (1) ≥ c
qM

.

Eliminating the constant from the manager’s objective function and the max

operators from ICL, we obtain the following problem:

min
(wHH (1),w

L
H (1))∈R

2
+

 p
µ
H

1− pµH


T qHwHH (1)− cqMw

L
H(1)− c


subject to

[ICL]

 p
µ
H

1− pµH


T (qH − qM)wHH (1)(qM − qL)wLH(1)

 ≥
 p

µ
L

1− pµL


T 

qH
qM
c − c

qM
qL
c − c


[OBHH ] qHw

H
H (1)− c ≥ 0

[OBLH ] qMw
L
H(1)− c ≥ 0.

Notice, the left-hand side of ICL is increasing in wHH (1) and wLH(1) and the

constraint is not satisfied when OBHH and OBLH bind. Hence, to minimize wage
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payments, the manager chooses wHH (1) and wLH(1) so that the constraint holds

with equality, i.e. ICL binds.

We now identify the optimal values of wHH (1) and wLH(1) to pin down all

optimal wages. Notice, the slope of the manager’s isocost line when written

with wHH (1) on the left-hand side is,

−
1− pµH
p
µ
H

qM
qH
,

while the slope of the worker’s incentive constraint (which holds with equality

at the optimal wage scheme) when written with wHH (1) on the left-hand side is,

−
1− pµH
p
µ
H

qM − qL
qH − qM

.

When the slope of the isocost line is more negative than that of the worker’s

incentive constraint, then setting wLH(1) =
c
qL

and using ICL to determine wHH (1)

is optimal. This happens if and only if,

−
1− pµH
p
µ
H

qM
qH
≤ −

1− pµH
p
µ
H

qM − qL
qH − qM

⇐⇒
qM
qH
≥
qM − qL
qH − qM

⇐⇒
qH
qM
≥
qM
qL
.

Put differently, if µ exhibits negative assortativity and the technology is log

supermodular, then wLH(1) =
c
qL

is optimal. Using the binding constraint ICL,

the optimal value of wHH (1) is given by,

wHH (1) = −
1− pµH
p
µ
H

qM − qL
qH − qM

c
qL

+
1

p
µ
H(qH − qM)

 p
µ
L

1− pµL


T 

qH
qM
c − c

qM
qL
c − c

 .
Similarly, if µ exhibits positive assortativity and the technology is log submod-

ular, then wHH (1) =
c
qM

is optimal. Using the binding constraint ICL, the optimal

value of wLH(1) is given by,

wLH(1) = −
p
µ
H

1− pµH

qH − qM
qM − qL

c
qM

+
1

(1− pµH )(qM − qL)

 p
µ
L

1− pµL


T 

qH
qM
c − c

qM
qL
c − c

 .
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Once the manager has found the optimal wages (wHH (1),w
L
H(1)), she pins down

the optimal value of ū∗L at any optimal contract using the binding constraint

IC ′H . As the manager’s expected payments are proportional to ūL, any wages

for lows such that OH
L and OL

L bind and ūL = ū∗L are optimal.

A.4 Proof of Theorem 2

Total expected output is given by,

O(µ) =pµ(H,H)qH + pµ(H,L)qM + pµ(L,L)qL

=
N
2

[
pp

µ
HqH + (p(1− pµH ) + (1− p)pµL)qM + (1− p)(1− pµL)qL

]
,

where pµ(H,H) = pp
µ
H
N
2 , pµ(L,L) = (1−p)pµL N2 , and pµ(H,L) = ((1−p)pµL +p(1−p

µ
H ))

N
2

denote the expected number of teams composed of two highs, a high and a

low, and two lows. From the proof of Theorem 1, we saw that the manager’s

total expected wage payments are given by,

C(µ) =N (pūH + (1− p)ūL + c).

Let C∗(µ) denote its value at an optimal wage scheme given µ, and ū∗H and

ū∗L the corresponding information rents paid to each worker. Then, the man-

ager’s profit maximizing problem is to choose an equal treatment matching µ

to maximize,

O(µ)−C∗(µ) =N
2

[
pp

µ
HqH + (p(1− pµH ) + (1− p)pµL)qM + (1− p)(1− pµL)qL

]
−N (pū∗H + (1− p)ū∗L + c).

As N is positive and Nc does not depend on µ, it is therefore equivalent to

choose an equal treatment matching µ to maximize

o(µ)−γ ∗(µ),

where o(µ) :=O(µ)/N is the expected output produced per worker and γ ∗(µ) :=

pū∗H + (1 − p)ū∗L is the optimal expected information rent paid per worker. We
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now show that both o(µ) and γ ∗(µ) depend only on µ through pµH and provide

comparative statics for each in terms of this parameter.

Claim 2. o(µ) depends on µ only through pµH , and is linear and strictly increas-

ing in pµH .

Proof. Observe that,

o(µ) =
1
2

[
pp

µ
HqH + (p(1− pµH ) + (1− p)pµL)qM + (1− p)(1− pµL)qL

]
=pµH

p

2
(qH + qL − 2qM) + pqM +

1− 2p
2

qL, (1)

where the inequality follows by imposing the requirement that p(1− pµH ) = (1−

p)pµL so that pµL = p
1−p(1 − p

µ
H ). Clearly, the expression is linear in p

µ
H . As

expected output satisfies strictly increasing differences, qH + qL − 2qM > 0.

Hence, o(µ) is strictly increasing in pµH .

Claim 3. γ ∗(µ) depends on µ only through pµH , and is piecewise linear, continu-

ous and convex in pµH . If the production technology is strictly log supermodular

(submodular), then γ ∗(µ) is strictly decreasing (increasing) in pµH . If the pro-

duction technology is strictly log supermodular, then the slope of γ ∗(µ) is equal

to

∂γ ∗(µ)

∂p
µ
H

=

 c
p2

1−p

(
qM
qL
− qH
qM

)
+ c

1−p
q2M−qHqL
qM (qM−qL)

if pµH < p

c p
2

1−p

(
qM
qL
− qH
qM

)
if pµH > p,

and if the production technology is strictly log submodular, then the slope of

γ ∗(µ) is equal to

∂γ ∗(µ)

∂p
µ
H

=

 c
p2

1−p

(
qM
qL
− qH
qM

)
if pµH < p

c p
2

1−p

(
qM
qL
− qH
qM

)
+ c

1−p
q2M−qHqL
qL(qH−qM ) if pµH > p,
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Finally, if the production technology is both log submodular and log supermod-

ular, then γ ∗(µ) is constant in pµH .

Proof. If pµH > p (pµH < p) and the production technology is log supermodular

(submodular), then ū∗L = 0 and

ū∗H =

 p
µ
L

1− pµL


T 

qH
qM
c − c

qM
qL
c − c

 = pµH cp

1− p

(
qM
qL
−
qH
qM

)
+α1, (2)

where α1 :=
p

1−p
qH
qM
c + 1−2p

1−p
qM
qL
c − c is a constant that does not depend on µ and

p
µ
L =

p
1−p(1− p

µ
H ) is applied to obtain the second equality. Consequently,

γ ∗(µ) = pū∗H + (1− p)ū∗L = p
µ
H

cp2

1− p

(
qM
qL
−
qH
qM

)
+ pα1, (3)

which depends on µ only through p
µ
H . If the production technology is both

log submodular and log supermodular, then qH
qM

= qM
qL

so that γ ∗(µ) is constant

in pµH . Under strict log supermodularity (submodularity), γ ∗(µ) is linear and

strictly decreasing (increasing) in pµH on (p,1) ((0,p)), with

∂γ ∗(µ)

∂p
µ
H

= c
p2

1− p

(
qM
qL
−
qH
qM

)
.

For the other cases, as seen in the proof of Theorem 1,

ū∗H =

 p
µ
H

1− pµH


T qHwHH (1)− cqMw

L
H(1)− c

 ,
and,

ū∗L =

 p
µ
H

1− pµH


T qHwHH (1)− cqMw

L
H(1)− c

−
 p

µ
L

1− pµL


T 

qH
qM
c − c

qM
qL
c − c

 ,
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where wHH (1) and wLH(1) are optimal wages. Hence,

γ ∗(µ) = pū∗H + (1− p)ū∗L

=

 p
µ
H

1− pµH


T qHwHH (1)qMw

L
H(1)

+ pµHcp
(
qH
qM
−
qM
qL

)
+α2,

where the second equality follows from the second equality in Equation 2 and

α2 := −(1− p)α1 − c = p
(
qM
qL
−
qH
qM

)
c+ p

(
qM
qL
− 1

)
c −

qM
qL
c

is a constant that does not depend on µ.

If the production technology is strictly log supermodular and pµH < p, then

wHH (1) =
c
qM

, so that

p
µ
HqHw

H
H (1) = p

µ
Hc
qH
qM
.

Further,

wLH(1) = −
p
µ
H

1− pµH

qH − qM
qM − qL

c
qM

+
1

(1− pµH )(qM − qL)

(
p
µ
H

cp

1− p

(
qM
qL
−
qH
qM

)
+α1

)
,

so that,

(1− pµH )qMw
L
H(1) =p

µ
Hc

[
p

1− p
q2M − qHqL
qL(qM − qL)

−
qH − qM
qM − qL

]
+α1

qM
qM − qL

.

Consequently,

γ ∗(µ) =pµHc
[
p2

1− p

(
qM
qL
−
qH
qM

)
+

1
1− p

q2M − qHqL
qM(qM − qL)

]
+α3,

where

α3 : = α2 +α1
qM

qM − qL

is a constant that does not depend on µ. Once again, the resulting expression
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depends on µ only through pµH . Further, if pµH = p, we obtain the expression

γ ∗(µ) =cp
[
p2

1− p

(
qM
qL
−
qH
qM

)]
+ pα1,

so that γ ∗(µ) is continuous on [0,1] when the production technology satisfies

strict log supermodularity. Finally, γ ∗(µ) is linear and strictly decreasing in

(0,p), with slope equal to

∂γ ∗(µ)

∂p
µ
H

= c
[
p2

1− p

(
qM
qL
−
qH
qM

)
+

1
1− p

q2M − qHqL
qM(qM − qL)

]
< 0,

where the inequality follows because qH
qM
> qM

qL
implies q2M < qHqL.

We now consider the case in which the production technology is strictly log

submodular and pµH > p. Then, wLH(1) =
c
qL

, so that

(1− pµH )qMw
L
H(1) = (1− pµH )c

qM
qL
.

Hence,

γ ∗(µ) = pµHw
H
H (1) + p

µ
Hc

[
p

(
qH
qM
−
qM
qL

)
−
qM
qL

]
+ (1− pµH )qMw

L
H(1) +α4,

with

α4 := α2 + c
qM
qL

= p
(
qM
qL
−
qH
qM

)
c+ p

(
qM
qL
− 1

)
c.

Further,

wHH (1) = −
1− pµH
p
µ
H

qM − qL
qH − qM

c
qL

+
1

p
µ
H(qH − qM)

(
p
µ
H

cp

1− p

(
qH
qM
−
qM
qL

)
+α1

)
,

so that,

p
µ
HqHw

H
H (1) =p

µ
Hc

[
p

1− p
qH(qHqL − q2M)
qLqM(qH − qM)

+
qH(qM − qL)
qL(qH − qM)

]
+α1

qH
qH − qM

− c
qH(qM − qL)
qL(qH − qM)

.
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Consequently,

γ ∗(µ) =pµHc
[
p2

1− p

(
qM
qL
−
qH
qM

)
+

1
1− p

q2M − qHqL
qL(qH − qM)

]
+α5 (4)

where

α5 : = α4 +α1
qH

qH − qM
− c
qH(qM − qL)
qL(qH − qM)

,

is a constant that does not depend on µ. Further, if pµH = p, then

γ ∗(µ) =cp
[
p2

1− p

(
qM
qL
−
qH
qM

)]
+ pα1,

so that γ ∗(µ) is continues when the production function is strictly log submod-

ular. Finally, γ ∗(µ) is linear and strictly increasing in (p,1), with slope equal

to
∂γ ∗(µ)

∂p
µ
H

= c
[
p2

1− p

(
qM
qL
−
qH
qM

)
+

1
1− p

q2M − qHqL
qL(qH − qM)

]
> 0,

where the inequality follows because qM
qL
> qH
qM

implies q2M − qHqL > 0.

We put together the two claims to prove the Theorem. If the production

technology is log supermodular, then γ ∗(µ) is decreasing, at least weakly, in

p
µ
H . As o(µ) is strictly increasing in pµH , it is optimal to maximize pµH , i.e. PAM

is optimal.

If the production technology is strictly log submodular, however, Claim 3

implies that γ ∗(µ) is strictly increasing in pµH and piecewise linear convex with

a kink at p. And since o(µ) is linear, o(µ) − γ ∗(µ) is piecewise linear concave

with a kink at p. Therefore, PAM is the unique optimal matching if and only

if o(µ) − γ(µ) is strictly increasing in pµH on (p,1), NAM is the unique optimal

matching if and only if o(µ)−γ(µ) is strictly decreasing in pµH on (0,p), and RM

is the unique optimal matching if and only if o(µ)−γ(µ) is strictly increasing in

p
µ
H on (0,p) and strictly decreasing in pµH on (p,1). As profits are differentiable
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on (p,1), profits are strictly increasing in pµH on (p,1) if and only if,

∂

∂p
µ
H

[o(µ)−γ(µ)] =
p

2
(qH+qL−2qM)−c

[
1

1− p
q2M − qHqL
qL(qH − qM)

+
p2

1− p

(
qM
qL
−
qH
qM

)]
> 0,

or, when,

0 < c < c :=
1
2

(
1− p
p

) qH + qL − 2qM
(qMqL −

qH
qM

) + 1
p2

(
q2M−qHqL
qL(qH−qM )

)
 .

As profits are differentiable on (0,p), profits are strictly decreasing in pµH on

(0,p) if and only if,

∂

∂p
µ
H

[o(µ)−γ(µ)] =
p

2
(qH + qL − 2qM)− c

p2

1− p

(
qM
qL
−
qH
qM

)
< 0,

or, when,

c > c̄ :=
1
2

(
1− p
p

)qH + qL − 2qM
qM
qL
− qH
qM

 > 0.

Hence, PAM is the unique optimal matching if c < c, NAM is the unique optimal

matching if c > c̄, and RM is the unique optimal matching if c < c < c̄.

A.5 Proof of Theorem 3

Define pPAMH := max
µ∈M

p
µ
H and pNAMH := min

µ∈M
p
µ
H , where M is the set of all

equal treatment matchings. By Lemma 4, it is optimal to pay each worker c
qL

if

their team produces high output and 0 if their team produces low output and

implement PAM. For analytical convenience, we write the expected information

rent paid per worker under delegation in terms of pPAML instead of pPAMH , using

the observation that 1− pPAMH = 1−p
p p

PAM
L ,

γD :=cp
[
pPAMH

qH
qL

+ (1− pPAMH )
qM
qL
− 1

]
+ c(1− p)

[
pPAML

qM
qL

+ (1− pPAML )− 1
]

=cp
[
qH
qL

+
1− p
p

pPAML
2qM − qH − qL

qL
− 1

]
,
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Using Equation 4 in the proof of Theorem 1, we also write the expected infor-
mation rent paid per worker under PAM in terms of pPAML instead of pPAMH ,

γPAM :=
cp

1− p

[
pPAMH

(
p

(
qM
qL
−
qH
qM

)
+
1
p

q2M − qHqL
qL(qH − qM )

)
+ p

(
qH
qM
−
qM
qL

)
+
qHqL − q2M
qL(qH − qM )

+ (1− p)
(
qM
qL
− 1

)]
=
cp

1− p

[
1− p
p

pPAML

(
p

(
qH
qM
−
qM
qL

)
+
1
p

qHqL − q2M
qL(qH − qM )

)
+
1− p
p

q2M − qHqL
qL(qH − qM )

+ (1− p)
(
qM
qL
− 1

)]
=c

[
pPAML

(
p

(
qH
qM
−
qM
qL

)
+
1
p

qHqL − q2M
qL(qH − qM )

)
+
q2M − qHqL
qL(qH − qM )

+ p
(
qM
qL
− 1

)]
.

Expected wage payments under PAM are larger than under delegation if and
only if γD < γPAM , i.e.

c
[
p qHqL + (1− p)pPAML

2qM−qH−qL
qL

− p
]
< c

[
pPAML

(
p
(
qH
qM
− qMqL

)
+ 1
p
qHqL−q2M
qL(qH−qM )

)
+

q2M−qHqL
qL(qH−qM ) + p

(
qM
qL
− 1

)]
⇐⇒ pPAML

(
(1− p)2qM−qL−qHqL

− 1
p
qHqL−q2M
qL(qH−qM ) − p

(
qH
qM
− qMqL

))
< p

(
qM
qL
− qHqL

)
+

q2M−qHqL
qL(qH−qM ) .

Note that, for any p > 0, as N → ∞, pPAML → 0. The condition therefore

simplifies to,

0 < p <
q2M − qHqL
(qH − qM)2

:= p̃ < 1,

where the inequality follows from the assumption of strict supermodularity. For

any ε > 0, we can therefore find a Ñ such that, for any N > Ñ , if p < p̃ − ε,

then expected wage payments under PAM exceed those under delegation. As

both delegation and PAM implement the same matching, delegation therefore

yields higher profits than PAM.

Now, we compare delegation to an arbitrary non-assortative matching with

interim probability pµH ∈ [pNAMH ,p]. By Equation 1 in the proof of Theorem 1,

the loss in allocative efficiency arising from implementing such a matching is,

(pPAMH − pµH )
p

2
(qH + qL − 2qM) > 0.

And using Equation 3, the difference in expected rent payments is,

cp
[
pPAMH

(
qH+qL−2qM

qL

)
+2

(
qM
qL
− 1

)]
− cp

[
p
µ
H

p
1−p

(
qM
qL
− qH
qM

)
+ p

1−p

(
qH
qM
− qM

qL

)
+ qM

qL
− 1

]
= cp

[
qM
qL
− 1− (1− pµH )

p
1−p

(
qH
qM
− qM

qL

)
+ pPAMH

(
qH+qL−2qM

qL

)]
> 0,
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since pµL =
p

1−p(1− p
µ
H ) < 1. Hence, delegation yields higher profits if and only

if,

c ≤ 1
2

 (pPAMH − pµH )(qH + qL − 2qM)
qM
qL
− 1− (1− pµH )

p
1−p

(
qH
qM
− qM

qL

)
+ pPAMH

(
qH+qL−2qM

qL

) ,
for all pµH ∈ [pNAMH ,p]. The derivative of the right-hand side expression with

respect to pµH is proportional to a negative term,

−
(
qM
qL
− 1+

p

1− p
q2M − qHqL
qLqM

(1− pPAMH ) + pPAMH
qH + qL − 2qM

qL

)
< 0.

Hence, it is minimized when pµH = p. Consequently, delegation outperforms

both NAM and RM if and only if,

0 < c ≤ 1
2

 (pPAMH − p)(qH + qL − 2qM)(
qM
qL
− 1

)
− p

(
qH
qM
− qM

qL

)
+ pPAMH

(
qH+qL−2qM

qL

) := c̃.
B Global Distortion of PAM

Throughout our analysis, we have assumed that the manager restricts atten-

tion to contracts that induce effort by all workers in all teams. Under strict log

submodularity, we found conditions under which PAM is distorted given this

restriction. We now find conditions under which distorting PAM is optimal even

when consider the possibility of not implementing effort in some teams. We fo-

cus on the case in which the probability of highs is large and the firm is large.28

Proposition 1. Suppose N is large, p ≥ 1
2 , 2qM is close to qH + qL, and 2qM >

qH . Then, there exists ĉ > c̄ such that if c ∈ (c̄, ĉ), then implementing NAM and

effort by all workers in all teams yields strictly higher profits than implementing

PAM and any effort implementation. Hence, distorting PAM is globally optimal.
28The large firm case is of special interest since the output distortion introduced by implementing NAM rather

than PAM is increasing in N : pPAMH is increasing in N and pNAMH is decreasing in N . A derivation of this result is
available upon request.
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Proof. As N → ∞, pPAMH → 1 and, if p ≥ 1
2 , pNAMH → 2p−1

p .29 Hence, under

PAM, the expected number of teams with one high and one low converges

to zero in the large N limit and we need only consider three possibilities: (i)

implementing effort only in teams composed of two lows; (ii) implementing ef-

fort only in teams composed of two lows and teams composed of two highs;

and (iii) implementing effort only in teams composed of two highs. But, imple-

menting effort only in teams composed of two lows is infeasible since highs

would have an incentive to misreport their type, and implementing effort only

in teams composed of two lows and teams composed of two highs is equiv-

alent to implementing PAM and effort by all workers in all teams in the limit.

Hence, if c > c̄, so that implementing NAM and effort by all workers in all teams

outperforms implementing PAM and effort by all workers in all teams, then it

suffices to compare implementing NAM and effort by all workers to implement-

ing PAM and high effort only in teams composed of two highs to establish a

global distortion of PAM.

For any equal treatment matching, the optimal anonymous, independent

wage scheme implementing effort by two highs in a team is wHH (1) =
c
qH

and

all other wages equal to zero. Profit comparisons may be made by comparing

expected output produced per worker net expected wage paid per worker. In
29The expressions for pPAMH and pNAMH are given by:

P PAMH =
N/2−1∑
k=0

(
N − 1
2k

)
(1− p)2kpN−2k−1 +

N/2−1∑
k=0

(
N − 1
2k +1

)
(1− p)2k+1pN−2k−2N − 2k − 2

N − 2k − 1

P NAMH = 1−
1− p
p

P NAML = 1−
1− p
p

N/2−1∑
k=0

(
N − 1
k

)
(1− p)kpN−k−1 +

N/2−1∑
k=0

(
N − 1
k

)
(1− p)N−k−1pk k

N − k

 .
A derivation of the large N limit result is available upon request.
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the case of implementing PAM and effort by two highs, this simplifies to,

p
[qH
2
− c

]
.

If p ≥ 1
2 , so that pNAMH = 2p−1

p in the large firm limit, the corresponding expres-

sion when implementing NAM and effort in all teams is

2p − 1
2

qH + (1− p)qM − cp[
qH
qM
− 1]− c.

Hence, NAM and effort in all teams yields higher profits than PAM and effort

only in teams composed of two highs if,

p qH−2c2 < 2p−1
2 qH + (1− p)qM − cp[

qH
qM
− 1]− c⇔ c[p qHqM − 2p+1] < (1− p)qM + p−1

2 qH .

Notice that when 2qM > qH , the right-hand side is positive. Further, the left-

hand side is positive for any p. It follows that NAM and effort in all teams yields

higher profits than PAM and high effort in teams composed of two highs if

c <
1−p
2 (2qM − qH )
p qHqM − 2p+1

:= ĉ.

It remains to check that c̄ > ĉ. This happens if,
1−p
2 (2qM−qH )
p
qH
qM
−2p+1 > 1

2

(
1−p
p

)(
qH+qL−2qM
qM
qL
− qHqM

)
⇔ 2q

2
M
qL
− 2qH −

qHqM
qL

+ q2H
qM
>

q2H
qM

+ qHqL
qM
− 2qH +

(
1
p − 2

)
(qH + qL − 2qM)

⇔ 2q
2
M
qL
− qHqM

qL
− qHqL

qM
>
(
1
p − 2

)
(qH + qL − 2qM).

The right-hand is less than zero since qH + qL − 2qM > 0 under strict su-

permodularity and 1
p − 2 ≤ 0 when p ≥ 1

2 . The left-hand side is positive if

2qM > qH + qL
qH
qM

qL
qM

, which holds when 2qM ≈ qH + qL since strict log submod-

ularity implies that qHqM
qL
qM
< 1.

58


	Introduction
	Literature

	Model
	Environment
	Timing, Information, and Contracts

	The Manager's Problem
	Full-Information Benchmark
	Asymmetric-Information Problem
	Redundant Constraints

	The Optimal Contract
	Simplifying the Contract Space
	The Minimization Problem
	The Problem of Disassortative Incentives

	The Maximization Problem
	Intuition


	Delegated Matching
	Timing, Information, and Contracts
	Manager's Problem
	An Implementation Unattainable Under Centralized Matching
	Optimal Delegation Contract
	Optimality of Delegation

	Discussion
	Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Global Distortion of PAM

