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Abstract 
 
We present a first assessment of the predictive ability of machine learning methods 
for inflation forecasting in Costa Rica.  We compute forecasts using two variants of 
K-Nearest Neighbours, random forests, extreme gradient boosting and a long short-
term memory (LSTM) network.  We evaluate their properties according to criteria 
from the optimal forecast literature, and we compare their performance with that of 
an average of univariate inflation forecasts currently used by the Central Bank of 
Costa Rica.  We find that the best-performing forecasts are those of LSTM, 
univariate KNN and in lesser extent random forests.  Furthermore, a combination 
performs better than the individual forecasts included in it and the average of the 
univariate forecasts.  This combination is unbiased, its forecast errors show 
appropriate properties, and it improves the forecast accuracy at all horizons, both for 
the level of inflation and for the direction of its changes. 
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Resumen 

Se presenta una primera evaluación de la capacidad de métodos de aprendizaje 
automático para predecir la inflación en Costa Rica.  Se calculan pronósticos 
mediante dos variantes de K-Nearest Neighbours (KNN), bosques aleatorios, 
extreme gradient boosting y un modelo de tipo long short-term memory (LSTM).  Sus 
propiedades se evalúan de acuerdo con criterios sugeridos en la literatura sobre 
pronósticos óptimos, se compara su desempeño con el del promedio de los 
pronósticos univariados actualmente en uso en el Banco Central de Costa Rica. Los 
resultados son promisorios. Se encontró que los pronósticos con el mejor 
desempeño son los resultantes de aplicar LSTM, KNN univariado y en menor 
medida bosques aleatorios. Además, una combinación de los pronósticos obtenidos 
mediante estos métodos mejora el desempeño con respecto a los pronósticos 
individuales a todos los horizontes, y también supera en desempeño al promedio de 
los pronósticos univariados. La combinación resulta insesgada, sus errores de 
pronóstico no muestran patrones de correlación indeseables, y mejora la capacidad 
de pronóstico a todos los horizontes, tanto para el nivel de la inflación como para la 
dirección de sus cambios. 
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Forecasting Costa Rican Inflation with Machine Learning Methods 

 

1. Introduction 

Article 2 of the Organic Law of the Central Bank of Costa Rica (BCCR) states as its 
fundamental goal to the ensure internal stability of the currency, which has been 
understood as keeping a low and stable inflation.  As part of an ongoing effort to 
fulfill that goal, in 2005 the BCCR begun a process to migrate to an inflation targeting 
scheme that finished in 2018 with the formal adoption of such regime. 
  
One of the main features of this policy scheme is its prospective nature:  since 
monetary policy operates with a lag, policy decisions are made taking into account 
the expected trajectory of inflation and other relevant economic variables during the 
policy horizon. Hence, for an inflation-targeting central bank it is crucial to have 
adequate forecasts for the main economic variables in order to make adequate 
policy decisions, and among them, inflation forecasts are of particular importance.  
Currently, the BCCR forecasts inflation with an ensemble of univariate models 
(Fuentes and Rodríguez, 2016), an ensemble of Bayesian models (Chavarría and 
Chaverri, 2015) and a semi-structural econometric model (Muñoz and Tenorio, 
2008).  
 
All of these forecast come from relatively traditional econometric methods.  However, 
machine learning methods have become increasingly popular as a forecasting tool 
due to growing availability of big databases and computing power, and to greater 
access to specialized software. Their use is widespread in classification problems 
where the variable of interest is discrete, like prediction of delinquency in loans or 
consumer purchasing decisions, where they have often outperformed more 
traditional methods.  Most applications, hence, use cross-sectional data in 
classification problems.  However, machine learning methods can also be adapted 
for prediction of continuous time-series data, like inflation or GDP growth.  
 
Precisely, the goal of this study is to perform a first evaluation of the performance of 
machine learning methods in forecasting Costa Rican inflation.  The idea is to verify 
if forecasts from these methods comply with properties of optimal forecasts under 
quadratic loss, and if their performance is superior to that of their univariate 
counterparts currently in use at the BCCR.  
 
The rest of this document includes a very brief review of the methods applied, in 
section 2; the methodological details on data, implementation of the methods and 
evaluation criteria, in section 3; and the discussion of the main results in section 4, 
followed by a succinct concluding section.  
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2. Machine learning forecasting methods applied in the study 

In this section we present a brief review of machine learning methods applied in this 
study, beginning with a general characterization of the machine learning paradigm 
as opposed to traditional econometrics.  We do not attempt to present neither a 
formal nor exhaustive review of these methods, for that we suggest to go to the 
sources cited.  
 
 

2.1. Machine learning and econometrics 

 

A general definition of machine learning (ML) is the development and application of 

algorithms to allow machines to improve their performance in a particular task when 

presented with new information. There is no single unified framework for estimation 

and analysis, and generally the goal of these algorithms is to identify patterns in the 

data that can be used to predict values of random variables1. 

 

Breiman (2001b) states that the main differences of machine learning from traditional 

statistics and econometrics are the lesser emphasis that the former gives to 

traditional statistic inference, the lesser emphasis in the idea of a “true model” that 

generates the data, and greater emphasis in prediction and method optimization. 

Athey and Imbens (2019) present a useful review of the differences in several 

dimensions, which is the main source of the discussion below.   

 

Goals  

In the traditional econometric approach, an estimation object is defined that is a 

function of a joint data density, and which generally is a parameter in a statistical 

model describing the distribution of a set of variables in terms of a set of parameters. 

Those parameters are estimated with data from a random sample of the population, 

using objective functions like the sum of squared residuals or the likelihood function.   

The emphasis is usually on the quality of these estimators (unbiasedness, 

consistency, efficiency).   

On the other hand, the primary goal of the ML approach is to obtain algorithms that 

allow the prediction of values of a variable from a set of information of other variables. 

A loss function is defined based on the comparison of the predicted values with the 

true values, and the parameters of the model are set so that they have desirable 

properties in terms of that loss function.  

                                            
1 The terms machine learning (ML), artificial intelligence (AI) and data science (DS) are often 
confused.  AI is the most general concept: it refers to “…the science and engineering of making 
intelligent machines…” (McCarthy, 2007).  ML can be characterized as a central field in AI, whose 
main goal is the automatic acquisition of knowledge from data. Data science is an inter-disciplinary 
field whose aim is to analyze information, obtain information from it and make predictions, for which 
ML techniques are generally used. 
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Validation and cross-validation 

In traditional econometrics there is no particular emphasis in model validation, whose 

form is generally supposed as externally given, for example by economic theory.  

The discussion on model selection is usually centered on hypothesis testing for 

parameters of a particular model, always under the assumption that there is an 

underlying true model. 

On the contrary, out-of-sample cross-validation in ML aims to improve the predictive 

ability rather than estimating a causal or structural model. It is a non-parametric 

approach which is more computationally costly, based in the comparison with out-

of-sample data, rather than in-sample goodness-of-fit measures. 

The two most widely used variants of cross-validation are K-fold cross-validation and 

leave-one-out cross-validation. In the former, data are randomly split into k groups 

of roughly the same size.  On the first iteration, the first group (k=1) is taken as the 

comparison group for the predicted values, obtained from the estimated model with 

data from the other K-1 groups, and a first prediction error measure is computed 

(M1). On the second iteration, the second group is taken as the comparison group 

and a second prediction error measure is computed (M2). The process is repeated 

K times and the final prediction error measure is the mean of the K error measures 

computed in the iterations. Leave-one-out cross-validation is simply validation with 

K iterations where K is equal to the number of available observations (one 

observation is left out of the estimation sample each time).  

 

Overfitting and regularization  

There is a greater emphasis in ML on avoiding overfitting than in traditional statistics 
and econometrics, so that the desired model should be flexible and fit the data well, 
but not at a cost in terms of predictive ability. To deal with overfitting, in ML the 
concept of regularization takes center stage. The idea is that for model selection, 
starting from a set of models that differ in complexity (for example in the number of 
parameters), rather than optimizing directly an objective function, a term is added to 
it penalizing model complexity. Obviously this practice is familiar in traditional 
econometrics due to the use of information criteria like the Akaike, Schwarz or 
Hannan-Quinn. The difference is that in ML regularization is guided by the data in a 
greater way than in the traditional approach, and it is determined explicitly by out-of-
sample predictive performance. 
 

 

Variable selection 

In econometrics the number of explanatory variables is generally set taking into 
account relevant economic theory under the idea of an underlying true model. In ML, 
on the other hand, the process is more data-driven.  It is common that in ML 
problems the number of variables be very large, even when a priori it could be 
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considered that many of those variables will not improve prediction. Given that it is 
not know which of those variables would indeed be useful, a frequently used guide 
is the sparsity principle. In a statistical model that comply with this principle there is 
a relatively small number of parameters of importance.  Thus, this assumption is 
used in ML techniques to extract the underlying signal from a potentially large 
dataset.  See Hartie, Tibshirani and Wainright (2015) for a more general discussion. 
 
 
Scalability 

 

ML methods give great importance to computational issues. It is of particular interest 

that methods are scalable, that is, that they can be applied with relative ease when 

the size of the dataset increases. Thus, it is possible that with the ML approach 

methods that might have desirable properties from the point of view of traditional 

statistics are discarded because they do not “scale well” to big datasets.  

 

 

Terminology 

An additional, although minor, difference, is the terminology often used. Some 
frequently used terms in ML have an exact counterpart in statistics and 
econometrics.  Some of the most frequent are: 
 

- Training, instead of estimation. 
- Features, instead of regressors, covarates or explanatory variables. 
- Weights, instead of coefficients. 
- Example or instance, instead of data point. 

 
An important distinction is between supervised and unsupervised learning.  
Suupervised learning is traditionally associated with regression analysis, performed 
with a dataset for a target variable y and regressors x.  When y is continuous, the 
supervised learning problem is a regression problem, and when it is categorical is it 
a classification one.  When only data on regressors is used, but no response variable 
y is defined, the approach is of the unsupervised nature, of which cluster analysis is 
an example. 
  
In this study we will used the traditional terminology, unless it is strictly necessary to 
use the ML terminology.  
 
 
2.2. K-Nearest neighbours 

The K-Nearest Neighbours algorithm (KNN) is a classification and regression 
algorithm that basically searches a set of periods similar to the most recent history 
of the data, and makes the forecast based on the subsequent evolution of the 
variable of interest. In the case of regression, the algorithm starts with a vector that 
includes the variable of interest and the explanatory variables, and using a distance 
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metric (Euclidean, Mahalanobis, etc) finds the K most similar periods (i.e. the nearest 
neighbours). The value of the target variable is predicted by aggregating the values 
after the periods where the nearest neighbours are located, typically using an 
average (simple or weighting by distance). This is one of the simplest ML algorithms, 
of the type “lazy learning”, where the forecast computation is done at the moment of 
the classification. The method can be used in its univariate version, in which the 
explanatory variables are lags of the target variable, or multivariate, when the vector 
of variables includes additional explanatory variables. Figure 1 illustrates the method 
for the univariate case with 2 lags of the target variable and 2 nearest neighbours. It 
can be seen that the forecasts for horizons 1 and 2 are aggregations of the 
observations for Y located in the following 1 or 2 periods after each of the nearest 
neighbours, and thus for forecasts at any horizon, with any number of neighbours K. 
 
 

Figure 1. Univariate KNN algorithm 
 

 
Source: Own elaboration. 
 
 
The principle of the multivariate KNN algorithm is the same, only considering the 
lags of the other variables besides those of Y. 
 
KNN regression originates in Mack (1981), and its use for forecasting time series is 
popularized by Yakowitz and Karlsson (1987), and Yakowitz (1987), who shows that 
this non parametric regression converges in squared mean at the optimal rate of 
Stone. Diebold and Nason (1990), Mizrach (1992), Lisi and Medio (1997), Lisi and 
Schiavo (1999), Meade (2002) and Fernandez-Rodriguez et al (1999) forecast 
exchange rates using KNN; Barkoulas, Baum and Chakraborty (1996) and Nowman 
and Saltoglu (2003) forecast interest rates; and Agnon et al (1999) apply this type of 
methods to the projection of commodity prices. More recently, Nikolopoulos et al 
(2015) use KNN to forecast sporadic demand in a supply chain setting.  
 
 

2.3. Random forests 

The random forests (RF) algorithm was proposed by Breiman (2001a). This non 
parametric classification system is also applicable to regression, and consists in a 
combination of predictive trees (classification and regression trees, CART) in which 
every tree depends of a random vector sampled independently from the distribution 

YT-s-2 YT-s-1 YT-s Y(T-s)+1 Y(T-s)+2 YT-p-2 YT-p-1 YT-p Y(T-p)+1 Y(T-p)+2 YT-2 YT-1 YT ỸT+1 ỸT+2

Aggregation
function

K = 2 nearest neighbours InstanceDistance metric Forecasts
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of all trees. Basically, the algorithm builds many decision trees in the estimation 
sample and outputs the mode of the classes (in classification problems) or the mean 
of the predictions (for regression). Random forests is based in the bagging principle 
applied to regression and classification trees. The review below follows closely 
Cameron (2017). 
 
The idea in a regression tree is sequentially split a set of regressors X in rectangular 
regions so that the sum of squared residuals (SSR) be reduced. The determination 
both of the regressor j to split and the splitting point s is done in the following way: 
  

 For each regressor  j and splitting point s, the following sets are defined 
 

R1(j,s)= {X / Xj < s}  and  R2(j,s)= {X / Xj ≥ s}   
 

 The values of j and s that minimize 
 

∑ (𝑦𝑖 − �̅�𝑅1)2

𝑖:𝑥𝑖∈R1(j,s)

+ ∑ (𝑦𝑖 − �̅�𝑅2)2

𝑖:𝑥𝑖∈R2(j,s)

 

 
are found, where �̅�𝑅1 is the average of the observations of y in region 1 and  

�̅�𝑅2 that of region 2. 
 

 Once this first split is found, the preceding criterion is used to further split R1 
and R2. 
 

 The splitting of regions stops when a predetermined criterion is met, called 
the terminal node size.  For example, the algorithm stops when there is less 
than m observations in each region. 

 
This method might result in overfitting because each split is done so as to optimize 
that particular step rather than deciding in a prospective way, choosing the split that 
would lead to the best future tree.  
 
The decision trees method can result in high variance if the trees in each split are 
very different.  One way to deal with this is the bagging method: to average over the 
results of the trees for many possible bootstrapped samples. For each sample, an 
error measure is computed using the observations out of the bootstrap sample (out-
of-bag error). Since the interpretation of the trees across samples is complicated, in 
order to determine the importance of each regressor it is common to compute the 
average for all of the trees of the amounts in which the SSR falls due to splits in that 
regressor.  A high value indicates an important predictor. 
  
Now, forecasts from bagging will be correlated because if a regressor is important it 
is likely to appear close to the beginning of the tree in each bootstrap sample.  The 
random forest method deals with this problem using only a subset of m < p predictors 

in each division within each bootstrap sample, with  𝑚 ≅ √𝑝 . This method reduces 
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correlation and variance, but results in a complex model, in which it is usual to 
evaluate the individual importance of the regressors following the procedure outlined 
in the previous paragraph.  
 

Applications of random forests have become popular in medicine and other 
biological sciences, but less so in economics. A notable example is Biau and D’Elia 
(2010), who apply the method to GDP forecasting for the Euro area from a dataset 
containing 172 indicators and find that it compares favourably both with 
autoregressive forecasts and with those of the Eurozone Economic Outlook. 
Furthermore, Bajari et al (2015) include random forests in their ML toolkit for the 
estimation of demand for groceries, and David (2017) apply them for the projection 
of growth and cycles in the Euro zone. 
  
 

2.4. Boosting 

Boosting was proposed by Freund and Schapire (1995, 1996), and introduced to 
regression problems by Friedman et al (2000) and Friedman (2001). This method 
aims at improving the forecasting ability of simple ML methods. Boosting methods 
do not estimate a single model, but begin with a linear regression to which the 
regressor with the largest contribution to overall fit is iteratively added (this is the 
boosting), according to in-sample performance, but without adjusting the coefficients 
already existing. 
 
This study applies the gradient boosting variant. While classification and regression 
trees use an algorithm that usually leads to overfitting, boosting methods use a 
slower algorithm to generate the sequence of trees. Crucially, boosting does not 
require bootstrapping, because each tree is generated from information of already 
existing trees, and is adjusted using a modified version of the original dataset.  In 
particular, in gradient boosting for the current model m: 
 

 A new tree is obtained for the residuals of m. 
 

 Current information is updated as 𝑓(𝑥) = 𝑓𝑚(𝑥) + 𝜆𝑓𝑟𝑒𝑠_𝑚(𝑥), where 𝜆 is a 
penalizing parameter. 

 

 Residuals are updated as 𝑟𝑒𝑠𝑖 = 𝑟𝑒𝑠𝑚 − 𝜆𝑓𝑟𝑒𝑠_𝑚(𝑥𝑖) 
 

 Finally, the boosted model is given by 

𝑓(𝑥) = ∑ 𝜆𝑓𝑟𝑒𝑠_𝑚(𝑥𝑖)
𝐵

𝑚=1
 

 
Variants of the boosting method have proved useful to forecast with large datasets 
in a computationally efficient way.  Some examples are Wohlrabe and Buchen 
(2014), who evaluate the performance of these methods in forecasting economic 
variables for the Euro zone and the USA; Lehmann and Wohlrabe (2016), who use 
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Germany data to assess the type of indicators usually selected by the method; and 
Zeng (2017), who successfully uses the method to select disaggregate variables to 
forecast aggregate variables. 
  
 
2.5. Long Short-Term Memory Models 

 
Hochreiter and Schmidhuber (1997) introduce Long Short-Term Memory (LTSM) 
networks, which have been shown to improve precision over traditional neural 
network models. These models are a type of recurrent neural network, different from 
traditional neural networks in that they include a feedback loop between past 
decisions and the current outcome. Thus, their functional architecture allows to solve 
the vanishing gradient problem in the updating rule, which makes possible to handle 
longer-run dependencies. 
  
Wang and Raj (2017) offer a succinct presentation of these models, which is 
summarized below. A recurrent neural network is a type of net with connections of 
units forming a directed loop, which allows them to work with time-series data. The 
architecture of LSTM was introduced because traditional recurrent neural networks 
could not handle long run dependencies (see Bengio et al, 1994).  The elements that 
form an LSTM cell are: 
 

 States. These are the values used to give the output information.  They 
include: 
 
o Input data: called here X. 

 
o Hidden state: called h, this is the values of the previous hidden layers, 

and is the same as in traditional recurrent neural networks. 
 

o Input state: these values are defined as a linear combination of the hidden 
state and the input data on the current period. It is given by: 

 

1( )t ix t ih ti W X W h


   

 

where ixW  is a weighting matrix and ihW is a transition matrix between the 

hidden states. These matrices can be thought of as filters that determine 
the importance given to the data and to the previous hidden state.  

 

o Internal state: denoted as m these are the values that act as memory for 
the model. 

 

 Gates. These are the values used to decide on the flow of information 
between states.  They include: 
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o Input gate: it “decides” whether the input state enters internal state. It 
is defined as: 

( )t gi tg W i  

 
o Forget gate:  this gate decides whether the internal state “forgets” the 

preceding internal state. It is defined as: 
 

( )t fi tf W i  

 
o Output gate: it decides whether the internal state passes its value to 

the output and the internal state of the following period. It is defined as: 
 

( )t oi to W i  

 

 The following two equations show how the gates determine the flow of 
information of the states: 

1t t t t tm g i f m


   

t t th o m  

 
where  indicates element-wise multiplication. 

 
In all cases   s an activation function, which generally is a logistic sigmoid or a 
hyperbolic tangent (tanh).  The interaction of these elements within the LSTM cell is 
presented in Figure 2. 
 
In these models all weights are parameters to be estimated, and hence LSTM can 
be capable of memorizing long time dependencies or of “forgetting” the past as 
needed. The errors generated by the weighting matrices W produce errors that 
return through a backpropagation process to adjust those weights so that the error 
is progressively reduced. This process allows that a fraction of the error be assigned 
to adjust the weights according to partial derivatives used by a learning rule to that 
end (the gradient descent optimization algorithm)2.  Precisely, LSTMs solve the 
vanishing gradient descent problem, which impairs the learning from distant 
information, by preserving the error that can be propagated through time and through 
the memory cells used.  
 
 
 
 
 
 

                                            
2 The simplest version of gradient descent for optimization follows 1 ( )t t tF   


   , where   is 

the learning rate and (.)F  is the gradient of the function to be optimized. 
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Figure 2. Architecture of an LSTM cell 

 
 

Source: Wang and Raj (2017). 
 

The widespread use of neural networks for forecasting of macroeconomic variables 
started in the 1990s, although the first developments on the topic date from the 
1940s (McCullogh and Pitts, 1943; Hebb, 1949). Among the first examples of their 
application for this type of problems are Swanson and White (1995, 1997), in finance; 
Tkacz and Hu (1999), to forecast Canada’s GDP; Stock and Watson (1998), who 
find that neural networks perform poorly in comparison to other univariate methods; 
Refenes and White (1998) and Fernández-Rodríguez et al (2000), also in finance; 
and Moshiri and Cameron (2000), who forecast inflation.  Nakamura (2006) shows 
that applying early stopping close to local minima improves forecasting ability, 
something already suggested by González (2000).  For Costa Rica, Solera (2005) 
and Esquivel (2007) apply simple neural network models with several specifications 
for inflation forecasting.  Cook and Hall (2017), forecast employment indicators using 

Input data X t Input state i t

Hidden state 

in t-1,  h t-1

Hidden state 

in t,  h t

Output gate o

Internal state m
Forget gate f

Input gate g
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several deep neural network architectures, among them LSTM and show that these 
improve precision with respect to simpler configurations. 
 

 

 

3. Forecasting scheme and evaluation criteria 

 

3.1. Data 

The variable to forecast is the interannual variation rate of the Consumer Price Index 
of Costa Rica (with base June-2015).  We used a dataset comprising monthly data 
for the variables detailed in Table 1. We included real sector variables, monetary 
and internal and external price variables, financial and exchange rate data, and 
labour market data. Furthermore, we included 12 lags of each of these variables, as 
well as a set of seasonal dummies, totaling 258 possible explanatory variables. Most 
of them correspond to interannual variation rates, except for interest rates and the 
Monetary Conditions Index.  Data covers the period January-2003 to February-2019.  
 
 

3.2. Forecasting procedure 

The first set of 12 forecast is done with data from January 2003 to December 2016, 
the following with data up to January 2017, and so on, increasing the estimation 
sample one month at a time.  From these multi-horizon forecasts, fixed-horizon 
series for 1, 3, 6 y 12-month forecasts were extracted.  These were the series 
included in the evaluation. Details of estimation and forecasting for each method are 
presented in the next sections. Table 14 of the annex presents software details. 
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Table 1. Variables used in the forecasts 

 
 

 

3.2.1. Univariate KNN 

The number of nearest neighbours to search, the number of lags of the target 
variable and the method to perform the multi-horizon forecast were chosen to 
minimize the average SSR of the forecast series. Forecasts were computed 
considering from 2 to 5 nearest neighbours, from 1 to 12 lags of the target variable 
and both a Multiple Input Multiple Output (MIMO) forecasting strategy and a 
recursive forecasting strategy.  With the MIMO strategy, for each nearest neighbour 
a vector of target values is defined, with size equal to that of the number of periods 
to forecast.  The forecast is then performed by searching the values of inflation most 
similar to the last 12 values of the time series, and by aggregating the target vectors 
that follow each nearest neighbour.  The recursive strategy is the usual procedure in 
autoregressive models, in which past predictions of the target variable are used 
when there is no more historical data for it.  In all cases Euclidean distance was 
used, and the aggregation function to generate the forecast was the arithmetic mean. 
  
Figure 3 shows the average of the roots of the mean squared errors (RMSE) for 
each estimated model. It is clear that the recursive forecasts are more precise in all 
cases, with a more homogeneous performance between models with different 

Name Description Source

 IPC Interannual variation rate of the Consumer Price Index (IPC), base 

June 2015

National Institute of 

Statistics and Censuses 

(INEC)

 EXPINF12 12-month inflation expectations Central Bank of Costa 

Rica (BCCR)

 TCN Interannual variation rate of the nominal exchange rate BCCR

 TCR_M Interannual variation rate of the multilateral Index of Real Exchange 

Rate

BCCR

 IMAETC Interannual variation rate of the Monthy Index of Economic Activity 

(IMAE), trend-cycle

BCCR

 ICFNIV Financial Conditions Index BCCR

 CREDPRIVSF Interannual variation rate of total credit of the national financial 

system to the private sector, local currency.

BCCR

 BASEM Interannual variation rate of the monetary base BCCR

 M1 Interannual variation rate of M1 BCCR

 TPM Monetary policy rate BCCR

 TBP Basic rate (Tasa Básica Pasiva) BCCR

 PRIMERATE Prime Rate BCCR

 PETRO Interannual variation rate of the oil barrel price, average. Pink Sheet, World Bank

 GRANOS Interannual variation rate of the Grains index Pink Sheet, World Bank

 INFSOC Inflation of trade partners (interannual variation) BCCR

 ISMNNIV Interannual variation rate of the Index of Minimum Nominal Wages BCCR

 ISMRNIV Interannual variation rate of the Index of Minimum Real Wages BCCR

 RESPIB Financial result of the Central Government as a share of GDP BCCR, with data from the 

Ministry of Finance

 DEUDAPIB Total internal debt as a share of GDP BCCR, with data from the 

Ministry of Finance
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number of neighbours and different number of lags. The forecasts with the lowest 
RMSE are those computed with a recursive strategy, 2 neighbours and 11 lags of 
the target variable. These will be the forecasts included in the evaluation.  
 
 

Figure 3. RMSE for univariate KNN models 

 
 
Source: Own elaboration 

 
 

3.2.2. KNN with explanatory variables 

We decided to include 11 lags of inflation, as in the univariate case. It would be 
impractical to consider all 258 exogenous variables in the search for nearest 
neighbours, hence a selection process was implemented. We began by considering 
the variables included in the inflation equation of the quarterly model of the BCCR 
(Muñoz and Tenorio, 2008), along with monetary and external prices variables, and 
we computed correlations of inflation with lags and leads of each one of them.  For 
each variable, we selected the lag that resulted in the highest correlation with 
inflation. Finally, we decided to include the contemporaneous value of 12-month 
ahead inflation expectations and of the interannual variation rate of nominal 
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exchange rate, the fourth lag of the interannual variation rate of the monetary base, 
the ninth lag of the policy rate, the eight lag of interannual variation rate of the oil 
Price and the sixth lag of the interannual variation rate of the price of grains. The 
number of neighbours was determined as in the univariate case:  by computing the 
average of the RMSEs of each set of forecasts for 2 to 5 neighbours.  The lowest 
RMSE was reached with 5 neighbours. We used Euclidean distance and 
aggregation by inverse-distance weighted average3.   
 
 

3.2.3. Random forests 

Implementation of random forests requires to set the number of trees to generate, 
the minimum number of terminal observations admissible in each node and the 
number of variables to include in each split.  It is generally accepted that the 
implementation of this method requires relatively little calibration of these parameters 
to obtain acceptable predictions (Segal, 2004; Boelaert y Ollion, 2018; Athey e 
Imbens, 2019).  The parameter that is most frequently optimally-calibrated is the 
number of candidate variables entering each split. Regarding the number of trees to 
generate, Breiman (2001a) proved convergence of the mean squared generalization 
error in random forest regression, which has been taken as an argument to use a 
high number of trees. Recently, research by Probst y Boulesteix (2018) on this issue 
showed that a high but computationally feasible number of trees can be 
recommended, as long as classic mean loss error measures are used.  
 
Taking into account these considerations, for the forecasting exercise the 
parameters were set in the following way: 
 

 Number of trees: it was set at 100 for all forecasting exercises. 
 

 Size of terminal nodes: 5 observations (usual value in most applications). 
 

 Number of variables in each tree: this parameter was calibrated for each 
forecasting exercise, by finding the number of variables that minimized out-
of-bag error. 

 
 

3.2.4. Extreme gradient boosting 

The version of boosting applied in this study is extreme gradient boosting, developed 
by Chen and Guestrin (2016) as a regularized adaptation of gradient boosting, 
whose end is to control overfitting. The difference with other implementations of the 
algorithm is technical: it is an efficient and, crucially, scalable application of the 
gradient boosting approach, which is optimized to receive sparse data, and allows 

                                            

3 With this method, the forecast is given by 
1 1

ˆ ( ) ( )
K K

i i i

i i

P w x P w x
 

  , where ( )iw x  is the 

inverse of the distance of each neighbour i.  
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for parallel computing, which makes it faster than other versions of the algorithm. 
For this study we used all variables described in section 3.1, with the RMSE as 
evaluation metric and cyclical selection of variables (deterministic selection, 
cyclically considering one variable at a time).  The parameters to calibrate are:  
 

- nrounds:  it controls the maximum number of iterations needed for the 
underlying gradient descent algorithm to converge.  
 

- lambda:  this parameter aims to avoid overfitting, by controlling the L2 
regularization process on the weights (variable coefficients), in a manner 
equivalent to a Ridge regression.   

 
- alpha:  this parameter also aims to limit overfitting, by controlling the L1 

regularization process, similar to a Lasso regression. 
 
 

3.2.5. LSTM model 

For estimation and forecasting we used the Keras package, an application 
programming interface (API) for R, launched in mid-2017.  This package runs on 
Tensorflow in Python, which serves as the “backend” engine (data access). 
  
The metric for evaluation during training was precision as measured by the MSE.  
We used the Adam optimizer by Kingma and Ba (2017), with the default learning 
rate of 0.02, default learning rate decay (1e-6), and hyperbolic tangent as the 
activation function.  
 

3.2.6. Evaluation criteria 

In this section we present a summary of the evaluation criteria applied in this study.  
These are derived from a long literature that includes Mincer and Zarnowitz (1969), 
Granger and Newbold (1973), Stekler (1991), and Diebold and López (1996), who 
present four properties that must be met by optimal forecasts under quadratic loss. 
West (2006) presents a useful review of the relevant literature. Presentation of the 
criteria follows closely Fuentes and Rodríguez (2016). 
 

a- Unbiasedness 
 

If a forecast does not systematically under of overestimate the true value of the target 
variable, forecast errors should have zero mean. Mincer and Zarnowitz (1969) 
propose an unbiasedness test based on the regression in levels given by: 
 

 ˆ      t s t s t sy y   
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where ˆ
t sy  is the forecast with horizon s for the target variable, and t sy   is its real 

value. The null hypothesis of unbiasedness is α =0 and β=1.  In this study we use 
Wald tests.  
 

b- Error correlation 

Diebold and López (1996) show that forecast errors t he  for an optimal forecast ˆ
t hy

are White noise for horizon h=1 and at most follow an MA(h-1) process for h>1.  They 
recommend the modified Wilcoxon signed-rank test proposed by Dufour (1981) for 
autocorrelation in the case h =1, and for h >1 the Cumby and Huizinga (1992) test, 
whose null hypothesis is that errors follow an MA(q) process, with 0 ≤ q ≤ h-1, and 
whose alternative hypothesis is that q > h.     

 
 

c- Precision 
 

We present RMSE and Theil inequality coefficients, and the statistical significance 
of differences in forecasting ability under quadratic loss for pairs of models are tested 
using the modified Diebold-Mariano test by Harvey, Leybourne and Newbold 
(1997)4.  Additionally, we compute the percentage of changes in direction of the 
inflation that were correctly predicted.  
 
 

d- Forecast error variances 
 

Diebold and López (1996) state that optimal forecasts under quadratic loss should 
have errors whose variance is non-decreasing as the forecast horizon increases. 
This basically reflects that the uncertainty of the forecast should decrease, not 
increase, when more information is available (as is the case for shorter horizons). 
To verify this property we conduct F tests for the difference of variances. 
 

e- Forecast encompassing 
 

Tests of forecast encompassing are used to determine whether a forecast contains 
all of the information used in one or several alternative forecasts. This is useful, for 
example, to decide if there is an information gain in combining several of them. We 
use the Chong and Hendry (1986) test for encompassing of point forecasts under 
quadratic loss function. From the regression: 

                                            

4 The statistics are 

1/2
1 2 ( 1) /

y
    

   
 d

d T k k k T
DM HLN DM

s T
 , where d  is the 

mean of the squared difference of forecast errors, ds  is a consistent estimate of its standard deviation, k is the 

forecast horizon and T the number of observations. 
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0 1 ,1 2 ,2
ˆ ˆ         t s t s t s t sy y y  

 
 we conclude that forecast 1 encompasses forecast 2 if the join null

   0 1 2 0 1 0    is not rejected, whereas forecast 2 encompasses forecast 

1 if    0 1 2 0 0 1     is not rejected.  Otherwise, both forecasts contain useful 

information. 
 

 

4. Evaluation results and discussion 

Means and standard deviations of the forecasts are presented in the following table.  
The results of the evaluation are presented in the following subsections.  
 

Table 2. Descriptive statistics for forecasts 

 
Source: Own elaboration 
 

 
4.1. Unbiasedness 

Table 3 shows that of the forecasts computed, only for those of the LSTM and the 
average of the univariate forecasts can the hypothesis of unbiasedness be 
maintained in at least one case. For the former, the null of unbiasedness is not 
rejected for the forecasts with horizons of 3, 6 and 12 months, while for the latter it 
is not rejected only for horizon h=1. 
 

h =1 h =3 h =6 h =12 h=1 h =3 h =6 h =12

Univariate KNN 0.0185 0.0181 0.0181 0.0161 0.0057 0.0058 0.0063 0.0064 

KNN with exogenous variables 0.0434 0.0433 0.0417 0.0314 0.0130 0.0158 0.0163 0.0213 

Random forests 0.0236 0.0278 0.0346 0.0407 0.0052 0.0046 0.0040 0.0033 

Extreme gradient boosting 0.0185 0.0181 0.0181 0.0161 0.0058 0.0068 0.0066 0.0110 

LSTM model 0.0184 0.0192 0.0193 0.0212 0.0055 0.0045 0.0043 0.0019 

Average of univariate methods 0.0190 0.0197 0.0201 0.0216 0.0057 0.0060 0.0066 0.0076 

Mean Standard deviation
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Table 3. Mincer and Zarnowitz (1969) unbiasedness test  
P-value for the joint Wald test 

 
           Source: Own elaboration 

 
 

4.2. Forecast error corrrelations 

In most cases forecast errors met the desirable properties set by Diebold and López 
(1996).  For horizons h>1, Cumby and Huizinga tests show than in all cases the null 
that the errors follow at most an MA(h-1) process is not rejected. Additionally, for the 
errors of the univariate KNN, extreme, gradient boosting, the LSTM model and the 
average of the univariate forecasts there is no statistical evidence of autocorrelation 
for the errors at 1-month horizon. 
 

Table 4. Autocorrelation tests for forecast errors 
 P-values 1/ 

 
1/  P-values for Cumby and Huizinga (1992) statistics for the null of errors following a MA(h-1) versus 
alternative of MA(h).  For h =1 the Wilcoxon test proposed by Dufour (1981) is used.       

         Source: Own elaboration 
 
 

4.3. Precision 

Table 5 shows the RSME and the Theil coefficient for the forecasts. At all horizons, 
the LSTM model show the highest precision, followed by the average of the 
univariate methods, the forecasts of the univariate KNN and those of extreme 
gradient boosting and random forests. The forecasts computed by KNN with 
exogenous variables show poor precision.   

h = 1 h = 3 h = 6 h = 12

Univariate KNN 0.0299 0.0000 0.0000 0.0000

KNN with exogenous variables 0.0000 0.0000 0.0000 0.0000

Random forests 0.0000 0.0000 0.0000 0.0000

Extreme gradient boosting 0.0097 0.0000 0.0000 0.0000

LSTM model 0.0454 0.0554 0.0503 0.7245

Average of univariate methods 0.0631 0.0000 0.0000 0.0000

h = 3 h = 6 h = 12

Wilcoxon/

Dufour

Univariate KNN 0.1618 0.0740 0.3841 0.9331 0.3173

KNN with exogenous variables 0.0000 0.0412 0.4250 0.7268 0.3173

Random forests 0.0000 0.0977 0.1797 0.4401 0.4167

Extreme gradient boosting 0.3746 0.1433 0.4072 0.1934 0.3173

LSTM model 0.3603 0.2642 0.1524 0.5528 0.3173

Average of univariate methods 1.0000 0.4717 0.1933 0.5658 0.3173

h = 1

Cumby & Huizinga (1992)
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Are these differences in forecasting ability statistically significant? Table 10 of the 
annex shows the p-values for the Harvey, Leybourne y Newbold tests for each pair 
of forecasts at each horizon.  At 5% significance, the tests show that the forecasts 
of LSTM and univariate KNN have the best performance, since those forecasts have 
the most significant differences in comparison with the rest of methods, and few 
significant differences between them. In particular, for horizons of 1 to 6 months, we 
cannot conclude that these two forecasts are significantly different.  
 
For the shortest horizon, univariate forecasts are significantly more precise than all 
methods, except univariate KNN and extreme gradient boosting.  Next are LSTM 
model forecasts, that outperform 2 methods. Furthermore, at this horizon the 
forecast obtained by random forests, extreme gradient boosting and univariate KNN 
are not significantly different. At longer horizons the performance of LSTM model 
forecasts is very good:  for horizons of 3 and 6 months they outperform all methods 
except univariate KNN and extreme gradient boosting, and for h=12 they are 
significantly more precise than all the others. Extreme gradient boosting forecasts 
deteriorate sharply at h =12.  Overall, the LSTM model shows the best performance, 
followed by univariate KNN and extreme gradient boosting, which are very similar 
between them, and random forests. KNN with exogenous variables is the worst 
performer, as it is significantly less precise than all methods at most horizons. 
 

Table 5. RMSE and Theil inequality coefficient for forecasts 

 
1/ Values closer to zero indicate more precision.  
Source: Own elaboration. 
 

Precision in the prediction of the direction of changes in inflation is summarized in 
Table 6.  It is noticeable the good performance of the random forests forecasts, since 
at all horizons the direction of the change in inflation is correctly predicted. This can 
be assessed from Figure 6: the series of random forests forecasts follow closely the 
movements of inflation, although generally at different levels.  Univariate KNN and 
the LSTM model also show good performance, but for horizons of 1, 3 and 6 months, 
while extreme gradient boosting has a modest performance over the 3 and 6-month 
horizons.  
 

h = 1 h = 3 h = 6 h = 12 h = 1 h = 3 h = 6 h = 12

Univariate KNN 0.0039 0.0062 0.0067 0.0100 0.1006 0.1587 0.1676 0.25743

KNN with exogenous variables 0.0267 0.0277 0.0256 0.0244 0.4111 0.4174 0.3910 0.41104

Random forests 0.0057 0.0089 0.0145 0.0193 0.1295 0.1834 0.2612 0.30792

Extreme gradient boosting 0.0044 0.0072 0.0072 0.0144 0.1130 0.1851 0.1819 0.38501

LSTM model 0.0039 0.0036 0.0042 0.0024 0.1003 0.0892 0.1027 0.05648

Average of univariate methods 0.0032 0.0061 0.0065 0.0094 0.0805 0.1487 0.1552 0.21178

RMSE Theil 1/
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Table 6. Prediction of the direction of changes in inflation 
In bold if greater than 50% 

 
 Source: Own elaboration 

 

4.4. Encompassing tests 

Tables Table 11 and Table 12 of the annex present the results of Chong and Hendry 
encompassing tests for each pair of forecasts at each horizon. At the shortest 
horizon, univariate-methods forecasts encompass those of KNN and boosting.  At 
higher horizons the LSTM model forecasts again show a better performance, since 
they are the only ones to encompass other forecasts, particularly for h=3 and h=12, 
when they encompass 4 and 5 of the 5 forecasts in comparison, respectively.  
 

 

4.5. Forecast error variance 

Most of the forecasts evaluated do not have variances that increase with the horizon. 
This property is verified only for univariate KNN forecasts and extreme gradient 
boosting. However, as seen in Table 13 of the annex, in most cases it cannot be 
concluded that the variances at different forecast horizons are significantly different 
from each other.  Only the variances for the forecast errors of univariate-method 
forecasts and univariate KNN at horizon h=1 can be said to be different from those 
at the rest of horizons. 
 

Table 7. Variances of forecast errors 

 
      Source: Own elaboration 

h = 1 h = 3 h = 6 h = 12

Univariate KNN 0.5600 0.6087 0.5500 0.4286

KNN with exogenous variables 0.6400 0.6522 0.3500 0.3571

Random forests 0.6800 0.6522 0.6000 0.7143

Extreme gradient boosting 0.4800 0.6522 0.5500 0.4286

LSTM model 0.6000 0.5652 0.5500 0.5000

Average of univariate methods 0.4800 0.6087 0.4500 0.2857

h = 1 h = 3 h = 6 h = 12

Univariate KNN 0.00002 0.00004 0.00004 0.00007

KNN with exogenous variables 0.00012 0.00023 0.00021 0.00054

Random forests 0.00001 0.00002 0.00001 0.00001

Extreme gradient boosting 0.00002 0.00005 0.00005 0.00011

LSTM model 0.00002 0.00001 0.00002 0.00001

Average of univariate methods 0.00001 0.00004 0.00004 0.00010
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4.6. Combination of forecasts 

In this section we evaluate a combination of the forecasts with the best individual 
performance. Ideally, the forecasts resulting from the combination should exhibit 
superior, or at least similar, properties as the individual forecasts.  In particular, it 
must be noted that of the methods assessed only LSTM model produces unbiased 
forecasts, hence it would be desirable to obtain a combination that shows this 
property while keeping the other desirable properties of the forecasts included in its 
calculation.  
 
From the analysis in sections 4.1 to 4.5 it can be concluded that the methods that 
consistently show desirable properties are LSTM and univariate KNN, although their 
ability to predict the direction of changes in inflation, while adequate, is lower than 
that of random forests.  We decided to combine the forecasts of these three methods 
with the procedure suggested by Capistrán and Timmermann (CT)5. The results of 
the combination are shown in Figure 4 and those of its evaluation in Table 8 and 
Cuadro 9.   

 

                                            
5 See Capistrán and Timmermann (2009). The combination resulting from this method are the fitted 
values of a regression of the true values of the target variable on a constant and the simple average 
of the individual forecasts. 
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Figure 4. Combination of forecast at several horizons 

 
 

 
 Source: Own elaboration 
 

In general, the results of the combination are very satisfactory. It is unbiased at all 
horizons, their forecast errors are not auto correlated at the h=1 horizon and at most 
follow a MA(h-1) process for h>1, and it has an ability to predict the direction of 
changes in inflation equal or higher than 50% at all horizons, but particularly those 
that are longer. Furthermore, at horizons of 3, 6 and 12 months the combination is 
significantly more precise than the individual forecasts with the more notable 
exception of the LSTM model.  For the closest horizon, however, the combination is 
not more precise than the univariate KNN forecast, extreme gradient boosting nor 
the average of the univariate methods6.  

 

                                            
6 The mean of these three individual forecasts was also evaluated, but their properties were not 
satisfactory.  In particular, it is not unbiased at all horizons, it does not improve on the precision of 
individual forecast and is considerably less precise than the CT combination presented.  Several CT 
combinations including extreme gradient boosting were also considered, resulting in undesirable 
properties (bias at longer horizons, poor prediction of direction of changes). 
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Table 8. Evaluation of the forecast combination 
Several tests 

 
1/  h=1 :  Wilcoxon, others:  Cumby and Huizinga 

Source: Own elaboration 
 

 

Cuadro 9. P-values for the Harvey, Leybourne and Newbold (1997) test 
 Combination vs individual methods 

In bold if the forecast error of the column is significantly lower than that of the row 

 
Source: Own elaboration 
 

 

5. Conclusions 

The goal of this study was to perform a first evaluation of the capacity to forecast 
inflation of machine learning methods in Costa Rica.  Forecasts were computed with 
5 methods: two variants of KNN, random forests, extreme gradient boosting and a 
long short-term memory (LSTM) model. Their properties were evaluated according 
to the properties suggested by the literature on optimal forecasts, comparing their 
performance with that of the average of univariate methods described in Fuentes 
and Rodríguez (2016) and currently in use at the Central Bank of Costa Rica. 
 
We found that the forecast with the best performance are those from the LSTM 
model, univariate KNN and to a lesser extent random forests and extreme gradient 
boosting. In particular, LSTM model forecasts are unbiased for horizons longer than 
1 month, show more precision than the rest of the forecasts and they encompass 
most other forecasts. 
 

P-value for null 

hypothesis of 

unbiasedness

Prediction of 

direction of changes 

in inflation (% 

success)

P-values for 

autocorrelation tets 1/

Forecast error 

variances

h=1 1.00 0.6400 0.2940 0.000010

h=3 1.00 0.6957 0.2832 0.000013

h=6 1.00 0.5000 0.5932 0.000012

h=12 1.00 0.5714 0.3173 0.000008

h = 1 h = 3 h = 6 h = 12

Univariate KNN 0.0847 0.0490 0.0234 0.0457

KNN with exogenous variables 0.0000 0.0000 0.0003 0.0013

Random forests 0.0091 0.0015 0.0000 0.0000

Extreme gradient boosting 0.0999 0.0037 0.0226 0.0526

LSTM model 0.0112 0.4333 0.1966 0.6729

Average of univariate methods 0.4132 0.0327 0.0029 0.0288

Combination
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A combination of forecasts improves the performance in comparison with individual 
forecasts at all horizons, and crucially, also outperforms the forecasts from univariate 
methods. The combination is unbiased, their errors do not show undesirable 
correlation patterns, and it improves forecasting ability at all horizons, both for the 
level of inflation and for the direction of its changes. 
  
Given these results, we consider that the implementation of machine learning 
methods for forecasting at the BCCR is a promissory endeavor. A first line of work 
could be the improvement in the application of methods that underperformed in the 
study, as well as the potential extension of the work to include additional ML 
methods.  
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7. Annex 

Figure 5. Variables used 

 
 

-.04

.00

.04

.08

.12

.16

.20

2
0

0
3

m
1

2
0

0
4

m
1

2
0

0
5

m
1

2
0

0
6

m
1

2
0

0
7

m
1

2
0

0
8

m
1

2
0

0
9

m
1

2
0

1
0

m
1

2
0

1
1

m
1

2
0

1
2

m
1

2
0

1
3

m
1

2
0

1
4

m
1

2
0

1
5

m
1

2
0

1
6

m
1

2
0

1
7

m
1

2
0

1
8

m
1

IPC

.02

.04

.06

.08

.10

.12

.14

2
0

0
3

m
1

2
0

0
4

m
1

2
0

0
5

m
1

2
0

0
6

m
1

2
0

0
7

m
1

2
0

0
8

m
1

2
0

0
9

m
1

2
0

1
0

m
1

2
0

1
1

m
1

2
0

1
2

m
1

2
0

1
3

m
1

2
0

1
4

m
1

2
0

1
5

m
1

2
0

1
6

m
1

2
0

1
7

m
1

2
0

1
8

m
1

EXPINF12

-.15

-.10

-.05

.00

.05

.10

.15

.20

2
0

0
3

m
1

2
0

0
4

m
1

2
0

0
5

m
1

2
0

0
6

m
1

2
0

0
7

m
1

2
0

0
8

m
1

2
0

0
9

m
1

2
0

1
0

m
1

2
0

1
1

m
1

2
0

1
2

m
1

2
0

1
3

m
1

2
0

1
4

m
1

2
0

1
5

m
1

2
0

1
6

m
1

2
0

1
7

m
1

2
0

1
8

m
1

TCN

-.20

-.15

-.10

-.05

.00

.05

.10

2
0

0
3

m
1

2
0

0
4

m
1

2
0

0
5

m
1

2
0

0
6

m
1

2
0

0
7

m
1

2
0

0
8

m
1

2
0

0
9

m
1

2
0

1
0

m
1

2
0

1
1

m
1

2
0

1
2

m
1

2
0

1
3

m
1

2
0

1
4

m
1

2
0

1
5

m
1

2
0

1
6

m
1

2
0

1
7

m
1

2
0

1
8

m
1

TCR_M

-.04

-.02

.00

.02

.04

.06

.08

.10

2
0

0
3

m
1

2
0

0
4

m
1

2
0

0
5

m
1

2
0

0
6

m
1

2
0

0
7

m
1

2
0

0
8

m
1

2
0

0
9

m
1

2
0

1
0

m
1

2
0

1
1

m
1

2
0

1
2

m
1

2
0

1
3

m
1

2
0

1
4

m
1

2
0

1
5

m
1

2
0

1
6

m
1

2
0

1
7

m
1

2
0

1
8

m
1

IMAETC

-2

-1

0

1

2

3

4

2
0

0
3

m
1

2
0

0
4

m
1

2
0

0
5

m
1

2
0

0
6

m
1

2
0

0
7

m
1

2
0

0
8

m
1

2
0

0
9

m
1

2
0

1
0

m
1

2
0

1
1

m
1

2
0

1
2

m
1

2
0

1
3

m
1

2
0

1
4

m
1

2
0

1
5

m
1

2
0

1
6

m
1

2
0

1
7

m
1

2
0

1
8

m
1

ICFNIV

-.1

.0

.1

.2

.3

.4

.5

2
0

0
3

m
1

2
0

0
4

m
1

2
0

0
5

m
1

2
0

0
6

m
1

2
0

0
7

m
1

2
0

0
8

m
1

2
0

0
9

m
1

2
0

1
0

m
1

2
0

1
1

m
1

2
0

1
2

m
1

2
0

1
3

m
1

2
0

1
4

m
1

2
0

1
5

m
1

2
0

1
6

m
1

2
0

1
7

m
1

2
0

1
8

m
1

CREDPRIVSF

-.1

.0

.1

.2

.3

.4

2
0

0
3

m
1

2
0

0
4

m
1

2
0

0
5

m
1

2
0

0
6

m
1

2
0

0
7

m
1

2
0

0
8

m
1

2
0

0
9

m
1

2
0

1
0

m
1

2
0

1
1

m
1

2
0

1
2

m
1

2
0

1
3

m
1

2
0

1
4

m
1

2
0

1
5

m
1

2
0

1
6

m
1

2
0

1
7

m
1

2
0

1
8

m
1

BASEM



31 

 

Figure 5 (cont.). Variables used 
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Figure 5 (cont.). Variables used 

 

 
 
Source: Own elaboration 
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Figure 6. Forecasts at several horizons 
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Table 10. P-values for Leybourne y Newbold (1997) test 
In bold if the forecast error of the column is significantly lower than that of the row 

h = 1 

 
 

 
h = 3 

 
 

 
h = 6 

 
 

 
h = 12 

 
 

Source: Own elaboration 

Univariate 

KNN

KNN with 

exogenous 

variables

Random 

forests

Extreme 

gradient 

boosting

LSTM 

model

Average of 

univariate 

methods

Univariate KNN 1.0000 0.9252 0.6721 0.4751 0.0743

KNN with exogenous variables 0.0000 0.0000 0.0000 0.0000 0.0000

Random forests 0.0748 1.0000 0.1709 0.0484 0.0172

Extreme gradient boosting 0.3279 1.0000 0.8291 0.3043 0.0998

LSTM model 0.5249 1.0000 0.9516 0.6957 0.0057

Average of univariate methods 0.9257 1.0000 0.9828 0.9002 0.9943

Cases where column error is lower than row error: 1 0 1 1 2 3

Univariate 

KNN

KNN with 

exogenous 

variables

Random 

forests

Extreme 

gradient 

boosting

LSTM 

model

Average of 

univariate 

methods

Univariate KNN 1.0000 0.8898 0.7423 0.0579 0.3927

KNN with exogenous variables 0.0000 0.0000 0.0000 0.0000 0.0000

Random forests 0.1102 1.0000 0.1781 0.0031 0.0762

Extreme gradient boosting 0.2577 1.0000 0.8219 0.0055 0.2259

LSTM model 0.9421 1.0000 0.9969 0.9945 0.9645

Average of univariate methods 0.6073 1.0000 0.9238 0.7741 0.0355

Cases where column error is lower than row error: 1 0 1 1 4 1

Univariate 

KNN

KNN with 

exogenous 

variables

Random 

forests

Extreme 

gradient 

boosting

LSTM 

model

Average of 

univariate 

methods

Univariate KNN 0.9995 1.0000 0.5882 0.0535 0.3980

KNN with exogenous variables 0.0005 0.0041 0.0007 0.0004 0.0004

Random forests 0.0000 0.9959 0.0000 0.0000 0.0000

Extreme gradient boosting 0.4118 0.9993 1.0000 0.0506 0.3657

LSTM model 0.9465 0.9996 1.0000 0.9494 0.9721

Average of univariate methods 0.6020 0.9996 1.0000 0.6343 0.0279

Cases where column error is lower than row error: 2 0 1 2 3 2

Univariate 

KNN

KNN with 

exogenous 

variables

Random 

forests

Extreme 

gradient 

boosting

LSTM 

model

Average of 

univariate 

methods

Univariate KNN 0.9903 0.9995 0.7712 0.0420 0.4078

KNN with exogenous variables 0.0097 0.1374 0.0046 0.0013 0.0031

Random forests 0.0005 0.8626 0.1543 0.0000 0.0001

Extreme gradient boosting 0.2288 0.9954 0.8457 0.0495 0.1800

LSTM model 0.9580 0.9987 1.0000 0.9505 0.9690

Average of univariate methods 0.5923 0.9969 0.9999 0.8200 0.0310

Cases where column error is lower than row error: 2 0 0 1 5 2
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Table 11. Results of Chong y Hendry (1986) encompassing tests 
For each pair of forecasts the table shows which forecast encompasses the other 

h = 1 

 
 
h = 3 

 
 

 
h = 6 

 
 
h = 12 

 
Source: Own elaboration 

 

 
 
 

Univariate 

KNN

KNN with 

exogenous 

variables

Random 

forests

Extreme 

gradient 

boosting

LSTM 

model

Average of 

univariate 

methods

Univariate KNN Column

KNN with exogenous variables Column

Random forests

Extreme gradient boosting Column

LSTM model

Average of univariate methods Row Row Row

Cases where column forecast encompasses row forecast: 0 0 0 0 0 3

Univariate 

KNN

KNN with 

exogenous 

variables

Random 

forests

Extreme 

gradient 

boosting

LSTM 

model

Average of 

univariate 

methods

Univariate KNN Column

KNN with exogenous variables Column

Random forests

Extreme gradient boosting Column

LSTM model Row Row Row Row

Average of univariate methods Column

Cases where column forecast encompasses row forecast: 0 0 0 0 4 0

Univariate 

KNN

KNN with 

exogenous 

variables

Random 

forests

Extreme 

gradient 

boosting

LSTM 

model

Average of 

univariate 

methods

Univariate KNN Column

KNN with exogenous variables

Random forests

Extreme gradient boosting

LSTM model Row Row

Average of univariate methods Column

Cases where column forecast encompasses row forecast: 0 0 0 0 2 0

Univariate 

KNN

KNN with 

exogenous 

variables

Random 

forests

Extreme 

gradient 

boosting

LSTM 

model

Average of 

univariate 

methods

Univariate KNN Column

KNN with exogenous variables Column

Random forests Column

Extreme gradient boosting Column

LSTM model Row Row Row Row Row

Average of univariate methods Column

Cases where column forecast encompasses row forecast: 0 0 0 0 5 0
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Table 12. P-values of Chong y Hendry (1986) encompassing tests  

 
h = 1 

 
 
h = 3 

 
 
Source: Own elaboration 

 
 
 
 
 
 
 
 
 
 
 
 
 

Ho:
Univariate 

KNN

KNN with 

exogenous 

variables

Random 

forests

Extreme 

gradient 

boosting

LSTM 

model

Average of 

univariate 

methods

Univariate KNN 0.0214 0.0014 0.0374 0.0550 0.0001

KNN with exogenous variables 0.0000 0.0000 0.0000 0.0000 0.0000

Random forests 0.0000 0.0000 0.0000 0.0000 0.0000

Extreme gradient boosting 0.0009 0.0178 0.0000 0.0005 0.0000

LSTM model 0.0672 0.0233 0.0006 0.0318 0.0000

Average of univariate methods 0.0910 0.0544 0.0338 0.1365 0.0150 0.0868

Ho:
Univariate 

KNN

KNN with 

exogenous 

variables

Random 

forests

Extreme 

gradient 

boosting

LSTM 

model

Average of 

univariate 

methods

Univariate KNN 0.0000 0.0000 0.0009 0.0672 0.0910

KNN with exogenous variables 0.0214 0.0000 0.0178 0.0233 0.0544

Random forests 0.0014 0.0000 0.0000 0.0006 0.0338

Extreme gradient boosting 0.0374 0.0000 0.0000 0.0318 0.1365

LSTM model 0.0550 0.0000 0.0000 0.0005 0.0150

Average of univariate methods 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

   0 1 2 0 1 0   

   0 1 2 0 0 1   

Ho:
Univariate 

KNN

KNN with 

exogenous 

variables

Random 

forests

Extreme 

gradient 

boosting

LSTM 

model

Average of 

univariate 

methods

Univariate KNN 0.0000 0.0000 0.0000 0.0000 0.0000

KNN with exogenous variables 0.0000 0.0000 0.0000 0.0000 0.0000

Random forests 0.0000 0.0000 0.0000 0.0000 0.0000

Extreme gradient boosting 0.0000 0.0000 0.0000 0.0000 0.0000

LSTM model 0.1324 0.1361 0.0371 0.0726 0.1152

Average of univariate methods 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Ho:
Univariate 

KNN

KNN with 

exogenous 

variables

Random 

forests

Extreme 

gradient 

boosting

LSTM 

model

Average of 

univariate 

methods

Univariate KNN 0.0000 0.0000 0.0000 0.1324 0.0000

KNN with exogenous variables 0.0000 0.0000 0.0000 0.1361 0.0000

Random forests 0.0000 0.0000 0.0000 0.0371 0.0000

Extreme gradient boosting 0.0000 0.0000 0.0000 0.0726 0.0000

LSTM model 0.0000 0.0000 0.0000 0.0000 0.0000

Average of univariate methods 0.0000 0.0000 0.0000 0.0000 0.1152

   0 1 2 0 1 0   

   0 1 2 0 0 1   
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Table 12 (cont.). P-values of Chong y Hendry (1986) encompassing tests 

 
h = 6 

 
 
h = 12 

 
 
Source: Own elaboration 

 
 
 
 
 
 
 
 
 
 

Ho:
Univariate 

KNN

KNN with 

exogenous 

variables

Random 

forests

Extreme 

gradient 

boosting

LSTM 

model

Average of 

univariate 

methods

Univariate KNN 0.0000 0.0000 0.0000 0.0000 0.0000

KNN with exogenous variables 0.0000 0.0000 0.0000 0.0000 0.0000

Random forests 0.0000 0.0000 0.0000 0.0000 0.0000

Extreme gradient boosting 0.0000 0.0000 0.0000 0.0000 0.0000

LSTM model 0.1105 0.0358 0.0000 0.0035 0.0868

Average of univariate methods 0.0000 0.0000 0.0000 0.0000 0.0000

Ho:
Univariate 

KNN

KNN with 

exogenous 

variables

Random 

forests

Extreme 

gradient 

boosting

LSTM 

model

Average of 

univariate 

methods

Univariate KNN 0.0000 0.0000 0.0000 0.1105 0.0000

KNN with exogenous variables 0.0000 0.0000 0.0000 0.0358 0.0000

Random forests 0.0000 0.0000 0.0000 0.0000 0.0000

Extreme gradient boosting 0.0000 0.0000 0.0000 0.0035 0.0000

LSTM model 0.0000 0.0000 0.0000 0.0000 0.0000

Average of univariate methods 0.0000 0.0000 0.0000 0.0000 0.0868

   0 1 2 0 1 0   

   0 1 2 0 0 1   

Ho:
Univariate 

KNN

KNN with 

exogenous 

variables

Random 

forests

Extreme 

gradient 

boosting

LSTM 

model

Average of 

univariate 

methods

Univariate KNN 0.0000 0.0000 0.0000 0.0000 0.0000

KNN with exogenous variables 0.0000 0.0000 0.0000 0.0000 0.0000

Random forests 0.0000 0.0000 0.0000 0.0000 0.0000

Extreme gradient boosting 0.0000 0.0000 0.0000 0.0000 0.0000

LSTM model 0.0693 0.4695 0.3764 0.0001 0.1260

Average of univariate methods 0.0000 0.0000 0.0000 0.0000 0.0000

Ho:
Univariate 

KNN

KNN with 

exogenous 

variables

Random 

forests

Extreme 

gradient 

boosting

LSTM 

model

Average of 

univariate 

methods

Univariate KNN 0.0000 0.0000 0.0000 0.0693 0.0000

KNN with exogenous variables 0.0000 0.0000 0.0000 0.4695 0.0000

Random forests 0.0000 0.0000 0.0000 0.3764 0.0000

Extreme gradient boosting 0.0000 0.0000 0.0000 0.0001 0.0000

LSTM model 0.0000 0.0000 0.0000 0.0000 0.0000

Average of univariate methods 0.0000 0.0000 0.0000 0.0000 0.1260

   0 1 2 0 0 1   

   0 1 2 0 1 0   
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Table 13. Tests of equality of variances 

P-values of tests for forecasts at horizons indicated in row/column 
 

 

 
 
Source: Own elaboration 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Univariate KNN KNN with exogenous variables

1 3 6 12 1 3 6 12

1 0.0398 0.0230 0.0007 1 0.1357 0.2013 0.0013

3 0.0398 0.7835 0.1320 3 0.1357 0.8693 0.0629

6 0.0230 0.7835 0.2265 6 0.2013 0.8693 0.0531

12 0.0007 0.1320 0.2265 12 0.0013 0.0629 0.0531

Random forests Extreme gradient boosting

1 3 6 12 1 3 6 12

1 0.3090 0.4251 0.4631 1 0.0360 0.0520 0.0002

3 0.3090 0.0864 0.1250 3 0.0360 0.9243 0.0774

6 0.4251 0.0864 0.9788 6 0.0520 0.9243 0.0744

12 0.4631 0.1250 0.9788 12 0.0002 0.0774 0.0744

LSTM model Average of univariate methods

1 3 6 12 1 3 6 12

1 0.6502 0.7874 0.0759 1 0.0021 0.0009 0.0000

3 0.6502 0.4876 0.1593 3 0.0021 0.7385 0.0513

6 0.7874 0.4876 0.0534 6 0.0009 0.7385 0.1137

12 0.0759 0.1593 0.0534 12 0.0000 0.0513 0.1137
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Table 14. Software used 

 
Source: Own elaboration 

 

Method Software

Univariate KNN R

KNN with exogenous 

variables
MATLAB

Random forests R

Extreme gradient 

boosting
R

LSTM model R

Average of univariate 

methods
MATLAB, Eviews

Details

Package tsfknn by Martínez, Frías, Pérez and Rivera 

(2017) for the application of KNN to time series.

Function knnsearch was used to find the neareast 

neighbours

Package randomForest by Breiman et al. (2018), for the 

generation of random forests for regression and 

classification.

Package dyn  by Grothendieck (2018), that allows the 

creation of interfaces with several functions that do 

regression, randomForests  among them. This package 

makes possible to use those functions with time series 

data, including specifications with lags and differences. 

Package xgboost by Chen et al (2015).

Keras  package, requires TensorFlow and Python.


